ﻻ يوجد ملخص باللغة العربية
We extend the study of the multifractal analysis of the class of equicontractive self-similar measures of finite type to the non-equicontractive setting. Although stronger than the weak separation condition, the finite type property includes examples of IFS that fail the open set condition. The important combinatorial properties of equicontractive self-similar measures of finite type are extended to the non-equicontractive setting and we prove that many of the results from the equicontractive case carry over to this new, more general, setting. In particular, previously it was shown that if an equicontractive self-similar measure of finite type was {em regular}, then the calculations of local dimensions were relatively easy. We modify this definition of regular to define measures to be {em generalized regular}. This new definition will include the non-equicontractive case and obtain similar results. Examples are studied of non-equicontractive self-similar generalized regular measures, as well as equicontractive self-similar measures which generalized regular in this new sense, but which are not regular.
The structure of the set of local dimensions of a self-similar measure has been studied by numerous mathematicians, initially for measures that satisfy the open set condition and, more recently, for measures on $mathbb{R}$ that are of finite type.
Consider a sequence of linear contractions $S_{j}(x)=varrho x+d_{j}$ and probabilities $p_{j}>0$ with $sum p_{j}=1$. We are interested in the self-similar measure $mu =sum p_{j}mu circ S_{j}^{-1}$, of finite type. In this paper we study the multi-fra
We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and t
We establish connections between several properties of topological dynamical systems, such as: - every point is generic for an ergodic measure, - the map sending points to the measures they generate is continuous, - the system splits into uniquely (a
We study equilibrium measures (Kaenmaki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such me