ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational constraints on the specific accretion-rate distribution of X-ray selected AGN

464   0   0.0 ( 0 )
 نشر من قبل Antonis Georgakakis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper estimates the specific accretion-rate distribution of AGN using a sample of 4821 X-ray sources from both deep and shallow surveys. The specific accretion-rate distribution is defined as the probability of a galaxy with a given stellar mass and redshift hosting an active nucleus with a certain specific accretion rate. We find that the probability of a galaxy hosting an AGN increases with decreasing specific accretion rate. There is evidence that this trend reverses at low specific accretion rates, $lambda<10^{-4}-10^{-3}$ (in Eddington units). There is also a break close to the Eddington limit, above which the probability of an accretion event decreases steeply. The specific accretion-rate distribution evolves such that the fraction of AGN among galaxies drops toward lower redshifts. This decrease in the AGN duty cycle is responsible for the strong evolution of the accretion density of the Universe from redshift $zapprox1-1.5$ to the present day. Our analysis also suggests that this evolution is accompanied by a decoupling of accretion events onto black holes from the formation of stars in galaxies. There is also evidence that at earlier times the relative probability of high vs low specific accretion-rate events among galaxies increases. We argue that this differential redshift evolution of the AGN duty cycle with respect to $lambda$ produces the AGN downsizing trend, whereby luminous sources peak at earlier epochs compared to less luminous ones. Finally, we also find a stellar-mass dependence of the specific accretion-rate distribution, with more massive galaxies avoiding high specific accretion-rate events.

قيم البحث

اقرأ أيضاً

The wide-area XMM-XXL X-ray survey is used to explore the fraction of obscured AGN at high accretion luminosities, $L_X (rm 2-10 , keV) > 10^{44} , erg ,s ^{-1}$, and out to redshift $zapprox1.5$. The sample covers an area of about $rm14,deg^2$ and p rovides constraints on the space density of powerful AGN over a wide range of neutral hydrogen column densities extending beyond the Compton-thick limit, $rm N_Happrox10^{24},cm^{-2}$. The fraction of obscured Compton-thin ($rm N_H=10^{22}-10^{24},cm^{-2}$) AGN is estimated to be $approx0.35$ for luminosities $L_X(rm 2-10,keV)>10^{44},erg,s^{-1}$ independent of redshift. For less luminous sources the fraction of obscured Compton-thin AGN increases from $0.45pm0.10$ at $z=0.25$ to $0.75pm0.05$ at $z=1.25$. Studies that select AGN in the infrared via template fits to the observed Spectral Energy Distribution of extragalactic sources estimate space densities at high accretion luminosities consistent with the XMM-XXL constraints. There is no evidence for a large population of AGN (e.g. heavily obscured) identified in the infrared and missed at X-ray wavelengths. We further explore the mid-infrared colours of XMM-XXL AGN as a function of accretion luminosity, column density and redshift. The fraction of XMM-XXL sources that lie within the mid-infrared colour wedges defined in the literature to select AGN is primarily a function of redshift. This fraction increases from about 20-30% at z=0.25 to about 50-70% at $z=1.5$.
We constrain X-ray spectral shapes for the ensemble of AGN based on the shape of the Cosmic X-ray Background (CXB). Specifically, we rule out regions of X-ray spectral parameter space that do not reproduce the CXB in the energy range 1-100 keV. The k ey X-ray spectral parameters are the photon index, {Gamma}; the cutoff energy, Ecutoff; and the reflection scaling factor, R. Assuming each parameter follows a Gaussian distribution, we first explore the parameter space using a Bayesian approach and a fixed X-ray luminosity function (XLF). For {sigma}_E = 36 keV and {sigma}_R = 0.14, fixed at the observed values from the Swift-BAT 70-month sample, we allow <R>, <Ecutoff > and <{Gamma}> to vary subject to reproducing the CXB. We report results for {sigma}_{Gamma} = 0.1-0.5. In an alternative approach, we define the parameter distributions, then forward model to fit the CXB by perturbing the XLF using a neural network. This approach allows us to rule out parameter combinations that cannot reproduce the CXB for any XLF. The marginalized conditional probabilities for the four free parameters are: <R> = 0.99^{+0.11}_{-0.26}, <Ecutoff> = 118^{+24}_{-23}, {sigma}_{Gamma} = 0.101^{+0.097}_{-0.001} and <{Gamma}> = 1.9^{+0.08}_{-0.09}. We provide an interactive online tool for users to explore any combination of <Ecutoff>, {sigma}_E, <{Gamma}>, {sigma}_{Gamma}, <R> and {sigma}_R including different distributions for each absorption bin, subject to the integral CXB constraint. The distributions observed in many AGN samples can be ruled out by our analysis, meaning these samples can not be representative of the full AGN population. The few samples that fall within the acceptable parameter space are hard X-ray-selected, commensurate with their having fewer selection biases.
Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars in binary systems. Motivated by high quality burst rate data emerging from large sta tistical studies, we report general calculations relating bursting rate to mass accretion rate and neutron star rotation frequency. In this first work we neglect general relativistic effects and accretion topology, though we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting neutron star. We also use the observed behaviour of burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long standing problem of the observed decrease of burst rate with increasing mass accretion that follows naturally from these calculations: when accretion rate crosses a certain threshold, ignition moves away from its initially preferential site and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.
We report on X-ray measurements constraining the spectral energy distribution (SED) of the high-redshift $z=5.18$ blazar SDSS J013127.34$-$032100.1 with new XMM-Newton and NuSTAR exposures. The blazars X-ray spectrum is well fit by a power law with $ Gamma=1.9$ and $N_{rm H}=1.1times10^{21}rm cm^{-2}$, or a broken power law with $Gamma_l=0.5$, $Gamma_h=1.8$, and a break energy $E_b=0.7$ keV for an expected absorbing column density of $N_{rm H}=3.6times 10^{20}rm cm^{-2}$, supported by spectral fitting of a nearby bright source. No additional spectral break is found at higher X-ray energies (1-30 keV). We supplement the X-ray data with lower-energy radio-to-optical measurements and Fermi-LAT gamma-ray upper limits, construct broadband SEDs of the source, and model the SEDs using a synchro-Compton scenario. This modeling constrains the bulk Doppler factor of the jets to $ge$7 and $ge$6 (90%) for the low- and high-$N_{rm H}$ SEDs, respectively. The corresponding beaming implies $ge$130 (low $N_{rm H}$) or $ge$100 (high $N_{rm H}$) high-spin supermassive black holes similar to J0131 exist at similar redshifts.
We present black hole masses and accretion rates for 182 Type 1 AGN in COSMOS. We estimate masses using the scaling relations for the broad Hb, MgII, and CIV emission lines in the redshift ranges 0.16<z<0.88, 1<z<2.4, and 2.7<z<4.9. We estimate the a ccretion rate using an Eddington ratio L_I/L_Edd estimated from optical and X-ray data. We find that very few Type 1 AGN accrete below L_I/L_Edd ~ 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGN. At lower accretion rates the BLR may become obscured, diluted or nonexistent. We find evidence that Type 1 AGN at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGN. However the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGN accrete at a narrow range of Eddington ratio, with L_I/L_Edd ~ 0.1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا