ﻻ يوجد ملخص باللغة العربية
We revisit the holographic dictionary for a free massless scalar in AdS$_3$, focusing on the `singleton solutions for which the boundary profile is an arbitrary chiral function. We look for consistent boundary conditions which include this class of solutions. On one hand, we give a no-go argument that they cannot be interpreted within any boundary condition which preserves full conformal invariance. On the other hand, we show that such solutions fit naturally in a generalization of the Comp`{e}re-Song-Strominger boundary conditions, which preserve a chiral Virasoro and current algebra. These observations have implications for the black hole deconstruction proposal, which proposes singleton solutions as candidate black hole microstate geometries. Our results suggest that the chiral boundary condition, which also contains the extremal BTZ black hole, is the natural setting for holographically interpreting the black hole deconstruction proposal.
We describe new boundary conditions for AdS$_2$ in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to $r{Diff}(S^1)ltimes C^infty(S^1)$ whose breaking to $r{SL}(2,R)times r{U}(1)$ controls the near-AdS$_2$ dynamics. The action re
We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an approp
Gauge systems in the confining phase induce constraints at the boundaries of the effective string, which rule out the ordinary bosonic string even with short distance modifications. Allowing topological excitations, corresponding to winding around th
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light cone gauge. For the higher spin theory based on sl(3, R) plus sl(3,R) algeb
The basic characteristics of the covariant chiral current $<J_{mu}>$ and the covariant chiral energy-momentum tensor $<T_{mu u}>$ are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in