ﻻ يوجد ملخص باللغة العربية
We identify a fundamental obstruction to any theory of the beginning of the universe, formulated as a semiclassical path integral. Hartle and Hawkings no boundary proposal and Vilenkins tunneling proposal are examples of such theories. Each may be formulated as the quantum amplitude for obtaining a final 3-geometry by integrating over 4-geometries. We introduce a new mathematical tool - Picard-Lefschetz theory - for defining the semiclassical path integral for gravity. The Lorentzian path integral for quantum cosmology with a positive cosmological constant is meaningful in this approach, but the Euclidean version is not. Framed in this way, the resulting framework and predictions are unique. Unfortunately, the outcome is that primordial tensor (gravitational wave) fluctuations are unsuppressed. We prove a general theorem to this effect, in a wide class of theories.
After working out the so called braneworld sum rules formalism in order to encompass Gauss-Bonnet terms, the generation of thick branes is proposed, even with a periodic extra dimension, what circumvents the Gibbons-Kallosh-Linde no-go theorem in this context.
In recent work, we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our m
We investigate the Teichm{u}ller parameters for a Euclidean multiple BTZ black hole spacetime. To induce a complex structure in the asymptotic boundary of such a spacetime, we consider the limit in which two black holes are at a large distance from e
The causal set approach to quantum gravity models spacetime as a discrete structure - a causal set. Recent research has led to causal set models for the retarded propagator for the Klein-Gordon equation and the dAlembertian operator. These models can
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi