ﻻ يوجد ملخص باللغة العربية
We study the transverse momentum distributions of single inclusive hadron production in ${e^ + }{e^ - }$ annihilation processes. Although the only available experimental data are scarce and quite old, we find that the fundamental features of transverse momentum dependent (TMD) evolution, historically addressed in Drell-Yan processes and, more recently, in Semi-inclusive deep inelastic scattering processes, are visible in ${e^ + }{e^ - }$ annihilations as well. Interesting effects related to its non-perturbative regime can be observed. We test two different parameterizations for the $p_perp$ dependence of the cross section: the usual Gaussian distribution and a power-law model. We find the latter to be more appropriate in describing this particular set of experimental data, over a relatively large range of $p_perp$ values. We use this model to map some of the features of the data within the framework of TMD evolution, and discuss the caveats of this and other possible interpretations, related to the one-dimensional nature of the available experimental data.
We compute the inclusive unpolarized dihadron production cross section in the far from back-to-back region of $e^+ e^-$ annihilation in leading order pQCD using existing fragmentation function fits and standard collinear factorization, focusing on th
A consistent phenomenological approach to the computation of transverse single spin asymmetries in inclusive hadron production is presented, based on the assumed generalization of the QCD factorization theorem to the case in which quark intrinsic mot
The production cross sections of $J/psi~eta_b$, $Upsilon;eta_c$ pairs in a single boson $e^+e^-$ annihilation have been studied in a wide range of energies, which will be achieved at future $e^+e^-$ colliders. The main color singlet contributions to
We discuss the production of two hadrons in e+e- annihilation within the framework of perturbative QCD. The cross section for this process is calculated to next-to-leading order accuracy with a selection of variables that allows the consideration of
The Collins effect connects transverse quark spin with a measurable azimuthal asymmetry in the yield of hadronic fragments around the quarks momentum vector. Using two different reconstruction methods we measure statistically significant azimuthal as