ﻻ يوجد ملخص باللغة العربية
Configuration of three different concave silver core-shell nanoresonators was numerically optimized to enhance the excitation and emission of embedded silicon vacancy (SiV) diamond color centers simultaneously. According to the tradeoff between the radiative rate enhancement and quantum efficiency (QE) conditional optimization was performed to ensure ~2-3-4 and 5-fold apparent cQE enhancement of SiV color centers with ~10% intrinsic QE. The enhancement spectra, as well as the near-field and charge distribution were inspected to uncover the physics underlying behind the optical responses. The conditionally optimized coupled systems were qualified by the product of the radiative rate enhancements at the excitation and emission, which is nominated as Px factor. The optimized spherical core-shell nanoresonator containing a centralized emitter is capable of enhancing considerably the emission via bonding dipolar resonance. The Px factor is 529-fold with 49.7% cQE at the emission. Decentralization of the emitter leads to appearance of higher order multipolar modes, which is not advantageous caused by their nonradiative nature. Transversal and longitudinal dipolar resonances of the optimized ellipsoidal core-shell resonator were tuned to the excitation and emission, respectively. The simultaneous enhancements result in 6.2x10^5 Px factor with 50.6% cQE at the emission. Rod-shaped concave core-shell nanoresonators exploit similarly transversal and longitudinal dipolar resonances, moreover they enhance the fluorescence more significantly due to their antenna-like geometry. Px factor of 8.34x10^5 enhancement is achievable while the cQE is 50.3% at the emission. The enhancement can result in 2.03x10^6-fold Px factor, when the criterion regarding the minimum QE is set to 20%.
Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, non-bleaching emission line at 738,nm. Two-photon excitation of this fluorescence offers the possibility of low-background d
The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been rep
Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium v
A novel numerical methodology has been developed, which makes possible to optimize arbitrary emitting dipole and plasmonic nano-resonator configuration with an arbitrary objective function. By selecting quantum efficiency as the objective function th
The strong-field control of plasmonic nanosystems opens up new perspectives for nonlinear plasmonic spectroscopy and petahertz electronics. Questions, however, remain regarding the nature of nonlinear light-matter interactions at sub-wavelength spati