We present the results of neutron scattering experiments to study the crystal and magnetic structures of the Mott-insulating transition metal oxyselenides Pr2O2M2OSe2 (M = Mn, Fe). The structural role of the non-Kramers Pr3+ ion is investigated and analysis of Pr3+ crystal field excitations performed. Long-range order of Pr3+ moments in Pr2O2Fe2OSe2 can be induced by an applied magnetic field.
Directly measuring elementary electronic excitations in dopant $3d$ metals is essential to understanding how they function as part of their host material. Through calculated crystal field splittings of the $3d$ electron band it is shown how transitio
n metals Mn, Fe, Co, and Ni are incorporated into SnO$_2$. The crystal field splittings are compared to resonant inelastic x-ray scattering (RIXS) experiments, which measure precisely these elementary $dd$ excitations. The origin of spectral features can be determined and identified via this comparison, leading to an increased understanding of how such dopant metals situate themselves in, and modify the hosts electronic and magnetic properties; and also how each element differs when incorporated into other semiconducting materials. We found that oxygen vacancy formation must not occur at nearest neighbour sites to metal atoms, but instead must reside at least two coordination spheres beyond. The coordination of the dopants within the host can then be explicitly related to the $d$-electron configurations and energies. This approach facilitates an understanding of the essential link between local crystal coordination and electronic/magnetic properties.
Antiferromagnetic metals attract tremendous interest for memory applications due to their expected fast response dynamics in the terahertz frequency regime. Reading from and writing information into these materials is not easily achievable using magn
etic fields, due to weak high-order magneto-optical signals and robustness of the magnetic structure against external magnetic fields. Polarized electromagnetic radiation is a promising alternative for probing their response, however, when ideal antiferromagnetic symmetry is present, this response vanishes. Hence, in this work we combine first-principles simulations with measurements of the polar magneto-optical Kerr effect under external magnetic fields, to study magneto-optical response of antiferromagnetic M$_2$As (M=Cr, Mn, and Fe). We devise a computational scheme to compute the magnetic susceptibility from total-energy changes using constraints on magnetic-moment tilting. Our predictions of the spectral dependence of polar magneto-optical Kerr rotation and ellipticity allow us to attribute these effects to breaking of the magnetic symmetry. We show that tilting affects the exchange interaction, while the spin-orbit interaction remains unaffected as the tilting angle changes. Our work provides understanding of the polar magneto-optical Kerr effect on a band structure level and underscores the importance of the magnetic susceptibility when searching for materials with large magneto-optical response.
Inelastic neutron scattering measurement is performed on a breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11. The observed dispersionless excitations are explained by a crystalline electric field (CEF) Hamiltonian of Kramers ion Yb3+ of which the loc
al symmetry exhibits C3v point group symmetry. The magnetic susceptibility previously reported is consistently reproduced by the energy scheme of the CEF excitations. The obtained wave functions of the ground state Kramers doublet exhibit the planer-type anisotropy. The result demonstrates that Ba3Yb2Zn5O11 is an experimental realization of breathing pyrochlore antiferromagnet with a pseudospin S = 1/2 having easy-plane anisotropy.
The collective spin-wave excitations in the antiferromagnetic state of $gamma$-Fe$_{0.7}$Mn$_{0.3}$ were investigated using the inelastic neutron scattering technique. The spin excitations remain isotropic up to the high excitation energy, ${hbaromeg
a}= 78$ meV. The excitations gradually become broad and damped above 40 meV. The damping parameter ${gamma}$ reaches 110(16) meV at ${hbaromega} = 78$ meV, which is much larger than that for other metallic compounds, e.g., CaFe$_2$As$_2$ (24 meV), La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$ ($52-72$ meV), and Mn$_{90}$Cu$_{10}$ (88 meV). In addition, the spin-wave dispersion shows a deviation from the relation $({hbaromega})^2 = c^2q^2 + {Delta}^2$ above 40 meV. The group velocity above this energy increases to 470(40) meV{AA}, which is higher than that at the low energies, $c = 226(5)$ meV{AA}. These results could suggest that the spin-wave excitations merge with the continuum of the individual particle-hole excitations at 40 meV.
We report comprehensive Raman-scattering measurements on a single crystal of double-perovskite Nd2ZnIrO6 in temperature range of 4-330 K, and spanning a broad spectral range from 20 cm-1 to 5500 cm-1. The paper focuses on lattice vibrations and elect
ronic transitions involving Kramers doublets of the rare-earth Nd3+ ion with local C1 site symmetry. Temperature evolution of these quasi-particle excitations have allowed us to ascertain the intricate coupling between lattice and electronic degrees of freedom in Nd2ZnIrO6. Strong coupling between phonons and crystal-field excitation is observed via renormalization of the self-energy parameter of the phonons i.e. peak frequency and line-width. The phonon frequency shows abrupt hardening and line-width narrowing below ~ 100 K for the majority of the observed first-order phonons. We observed splitting of the lowest Kramers doublets of ground state (4I9/2) multiplets i.e. lifting of the Kramers degeneracy, prominently at low-temperature (below ~ 100 K), attributed to the Nd-Nd/Ir exchange interactions and the intricate coupling with the lattice degrees of freedom. The observed splitting is of the order of ~ 2-3 meV and is consistent with the estimated value. We also observed a large number of high-energy modes, 46 in total, attributed to the intra-configurational transitions between 4f3 levels of Nd3+ coupled to the phonons reflected in their anomalous temperature evolution.
R. K. Oogarah
,C. P. J. Stockdale
,C. Stock
.
(2017)
.
"Crystal field excitations and magnons: their roles in oxyselenides Pr2O2M2OSe2 (M = Mn, Fe)"
.
Emma McCabe
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا