ترغب بنشر مسار تعليمي؟ اضغط هنا

A population study of gaseous exoplanets

47   0   0.0 ( 0 )
 نشر من قبل Angelos Tsiaras
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 $R_mathrm{Jup}$. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets out of the 30 analysed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4$sigma$ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.


قيم البحث

اقرأ أيضاً

We present numerically calculated, disk--integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar Systems gas eous planets: belts and zones, cyclonic spots, and polar hazes, to test whether such features leave traces in the disk--integrated flux and polarization signals. Broadband flux and polarization signals of starlight that is reflected by gaseous exoplanets are calculated using an efficient, adding--doubling radiative transfer code, that fully includes single and multiple scattering and polarization. The planetary model atmospheres are vertically inhomogeneous and can be horizontally inhomogeneous, and contain gas molecules and/or cloud and/or aerosol particles.
The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, we measure the average occurrence rate of exoplanets smaller than Jupiter with orbital periods in the range 2-25 years to be $2.0pm0.7$ planets per Sun-like star.
Reflected starlight measurements will open a new path in the characterization of directly imaged exoplanets. However, we still lack a population study of known targets amenable to this technique. Here, we investigate which of the about 4300 exoplanet s confirmed to date are accessible to the Roman Space Telescopes coronagraph (CGI) in reflected starlight at reference wavelengths $lambda$=575, 730 and 825 nm. We carry out a population study and also address the prospects for phase-curve measurements. We used the NASA Exoplanet Archive as a reference for planet and star properties, and explored the impact of their uncertainties on the exoplanets detectability by applying statistical arguments. We define a planet as Roman-accessible on the basis of the instrument inner and outer working angles and its minimum planet-to-star constrast (IWA, OWA, $C_{min}$). We adopt for these technical specifications three plausible configurations labeled as pessimistic, intermediate and optimistic. Our key outputs for each exoplanet are its probability of being Roman-accessible ($P_{access}$), the range of observable phase angles, the evolution of its equilibrium temperature, the number of days per orbit that it is accessible and its transit probability. In the optimistic scenario, we find 26 Roman-accessible exoplanets with $P_{access}$>25% and host stars brighter than $V$=7 mag. This population is biased towards planets more massive than Jupiter but also includes the super-Earths tau Cet e and f which orbit near their stars habitable zone. A total of 13 planets are part of multiplanet systems, 3 of them with known transiting companions, offering opportunities for contemporaneous characterization. The intermediate and pessimistic scenarios yield 10 and 3 Roman-accessible exoplanets, respectively. We find that inclination estimates (e.g. with astrometry) are key for refining the detectability prospects.
We present an extensive search in the literature and Gaia DR2 for visual co-moving binary companions to stars hosting exoplanets and brown dwarfs within 200 pc. We found 218 planet hosts out of 938 to be part of multiple-star systems, with 10 newly d iscovered binaries and 2 new tertiary stellar components. This represents an overall raw multiplicity rate of 23.2$pm$1.6% for hosts to exoplanets across all spectral types, with multi-planet systems found to have a lower duplicity frequency at the 2.2$sigma$ level. We found that more massive hosts are more often in binary configurations, and that planet-bearing stars in multiple systems are predominantly the most massive component of stellar binaries. Investigations of multiplicity as a function of planet mass and separation revealed that giant planets with masses >0.1 MJup are more frequently seen in stellar binaries than small sub-Jovian planets with a 3.6$sigma$ difference, a trend enhanced for the most massive (>7 MJup) short-period (<0.5 AU) planets and brown dwarf companions. Binarity was found to have no significant effect on the demographics of low-mass planets (<0.1 MJup) or warm and cool gas giants (>0.5 AU). While stellar companion mass appears to have no impact on planet properties, binary separation seems to be an important factor in the resulting structure of planetary systems. Stellar companions on separations <1000 AU can play a role in the formation or evolution of massive close-in planets, while planets in wider binaries show similar properties to planets orbiting single stars. Finally, numerous stellar companions on separations <1-3 arcsec likely remain undiscovered to this date. Continuous efforts to complete our knowledge of stellar multiplicity on separations of tens to hundreds of AU are essential to confirm the reported trends and further our understanding of the roles played by multiplicity on exoplanets.
66 - F. Davoudi , A. Poro , E. Paki 2020
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by th e EXOFAST with the value at the NASA Exoplanet Archive (NEA) using the confidence interval method. According to the results obtained from this comparison, there is an acceptable match for the planets radius with NEA values. Also, based on the average value of 350 mm optics in this study, it shows that the results obtained using small telescopes can be very significant if there is appropriate observational skill to study more discovered planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا