ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic DC conductivity and Onsager relations

189   0   0.0 ( 0 )
 نشر من قبل Jerome P. Gauntlett
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within holography the DC conductivity can be obtained by solving a system of Stokes equations for an auxiliary fluid living on the black hole horizon. We show that these equations can be derived from a novel variational principle involving a functional that depends on the fluid variables of interest as well as the time reversed quantities. This leads to simple derivation of the Onsager relations for the conductivity. We also obtain the relevant Stokes equations for bulk theories of gravity in four dimensions including a $vartheta Fwedge F$ term in the Lagrangian, where $vartheta$ is a function of dynamical scalar fields. We discuss various realisations of the anomalous Hall conductivity that this term induces and also solve the Stokes equations for holographic lattices which break translations in one spatial dimension.

قيم البحث

اقرأ أيضاً

We explore the structure of holographic entropy relations (associated with information quantities given by a linear combination of entanglement entropies of spatial sub-partitions of a CFT state with geometric bulk dual). Such entropy relations can b e recast in multiple ways, some of which have significant advantages. Motivated by the already-noted simplification of entropy relations when recast in terms of multipartite information, we explore additional simplifications when recast in a new basis, which we dub the K-basis, constructed from perfect tensor structures. For the fundamental information quantities such a recasting is surprisingly compact, in part due to the interesting fact that entropy vectors associated to perfect tensors are in fact extreme rays in the holographic entropy cone (as well as the full quantum entropy cone). More importantly, we prove that all holographic entropy inequalities have positive coefficients when expressed in the K-basis, underlying the key advantage over the entropy basis or the multipartite information basis.
We study the entanglement entropy in 1+1 dimensional conformal field theories in the presence of interfaces from a holographic perspective. Compared with the well-known case of boundary conformal field theories, interfaces allow for several interesti ng new observables. Depending on how the interface is located within the entangling region, the entanglement entropies differ and exhibit surprising new patterns and universal relations. While our analysis is performed within the framework of holography, we expect our results to hold more generally.
The role of quantum coherence and correlations in heat flow and equilibration is investigated by exploring the Rayleighs dynamical problem to equilibration in the quantum regime and following Onsagers approach to thermoelectricity. Specifically, we c onsider a qubit bombarded by two-qubit projectiles from a side. For arbitrary collision times and initial states, we develop the master equation for sequential and collective collisions. By deriving the Fokker-Planck equation out of the master equation, we identify the quantum version of the Rayleighs heat conduction equation. We find that quantum discord and entanglement shared between the projectiles can contribute to genuine heat flow only when they are associated with so-called heat-exchange coherences. Analogous to Onsagers use of Rayleighs principle of least dissipation of energy, we use the entropy production rate to identify the coherence current. Both coherence and heat flows can be written in the form of quantum Onsager relations, from which we predict coherent Peltier and coherent Seebeck effects. The effects can be optimized by the collision times and collectivity. Finally, we discuss some of the possible experimental realizations and technological applications of the thermocoherent phenomena in different platforms.
66 - J. Hutchinson 2014
The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch-OBannon technique. In addition, the low temperature entropy of the model is determined. The holographic model has a phase transition as the Landau level filling fraction is increased from zero to one. We argue that this phase transition allows the longitudinal conductivity to have features qualitatively similar to those of two dimensional electron gases in the integer quantum Hall regime. The argument also applies to the low temperature limit of the entropy. The Hall conductivity is found to have an interesting structure. Even though it does not exhibit Hall plateaux, it has a flattened dependence on the filling fraction with a jump, analogous to the interpolation between Hall plateaux, at the phase transition.
73 - Yue-Zhou Li , H. Lu , Liang Ma 2021
It is known that the $(a,c)$ central charges in four-dimensional CFTs are linear combinations of the three independent OPE coefficients of the stress-tensor three-point function. In this paper, we adopt the holographic approach using AdS gravity as a n effect field theory and consider higher-order corrections up to and including the cubic Riemann tensor invariants. We derive the holographic central charges and OPE coefficients and show that they are invariant under the metric field redefinition. We further discover a hidden relation among the OPE coefficients that two of them can be expressed in terms of the third using differential operators, which are the unit radial vector and the Laplacian of a four-dimensional hyperbolic space whose radial variable is an appropriate length parameter that is invariant under the field redefinition. Furthermore, we prove that the consequential relation $c=1/3 ell_{rm eff}partial a/partialell_{rm eff}$ and its higher-dimensional generalization are valid for massless AdS gravity constructed from the most general Riemann tensor invariants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا