ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic many-body approaches to materials with strong nonlocal correlations

348   0   0.0 ( 0 )
 نشر من قبل Michael Potthoff
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many of the fascinating and unconventional properties of several transition-metal compounds with partially filled d-shells are due to strong electronic correlations. While local correlations are in principle treated exactly within the frame of the dynamical mean-field theory, there are two major and interlinked routes for important further methodical advances: On the one hand, there is a strong need for methods being able to describe material-specific aspects, i.e., methods combining the DMFT with modern band-structure theory, and, on the other hand, nonlocal correlations beyond the mean-field paradigm must be accounted for. Referring to several concrete example systems, we argue why these two routes are worth pursuing and how they can be combined, we describe several related methodical developments and present respective results, and we discuss possible ways to overcome remaining obstacles.



قيم البحث

اقرأ أيضاً

179 - J. Kunes , I. Leonov , M. Kollar 2010
We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-fie ld theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.
In this paper, we characterize quasicrystalline interacting topological phases of matter i.e., phases protected by some quasicrystalline structure. We show that the elasticity theory of quasicrystals, which accounts for both phonon and phason modes, admits non-trivial quantized topological terms with far richer structure than their crystalline counterparts. We show that these terms correspond to distinct phases of matter and also uncover intrinsically quasicrystalline phases, which have no crystalline analogues. For quasicrystals with internal $mathrm{U}(1)$ symmetry, we discuss a number of interpretations and physical implications of the topological terms, including constraints on the mobility of dislocations in $d=2$ quasicrystals and a quasicrystalline generalization of the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem. We then extend these ideas much further and address the complete classification of quasicrystalline topological phases, including systems with point-group symmetry as well as non-invertible phases. We hence obtain the Quasicrystalline Equivalence Principle, which generalizes the classification of crystalline topological phases to the quasicrystalline setting.
Controlling the electronic properties of interfaces has enormous scientific and technological implications and has been recently extended from semiconductors to complex oxides which host emergent ground states not present in the parent materials. The se oxide interfaces present a fundamentally new opportunity where, instead of conventional bandgap engineering, the electronic and magnetic properties can be optimized by engineering quantum many-body interactions. We utilize an integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy system to synthesize and investigate the electronic structure of superlattices of the Mott insulator LaMnO3 and the band insulator SrMnO3. By digitally varying the separation between interfaces in (LaMnO3)2n/(SrMnO3)n superlattices with atomic-layer precision, we demonstrate that quantum many-body interactions are enhanced, driving the electronic states from a ferromagnetic polaronic metal to a pseudogapped insulating ground state. This work demonstrates how many-body interactions can be engineered at correlated oxide interfaces, an important prerequisite to exploiting such effects in novel electronics.
Ab initio calculation of the electronic properties of materials is a major challenge for solid state theory. Whereas the experience of forty years has proven density functional theory (DFT) in a suitable, e.g. local approximation (LDA) to give a sati sfactory description in case electronic correlations are weak, materials with strongly correlated, say d- or f-electrons remain a challenge. Such materials often exhibit colossal responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and have developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT by means of an example, LaMnO_3 . Results for this material, including the colossal magnetoresistance of doped manganites are presented. We also discuss advantages and disadvantages of the LDA+DMFT approach.
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas ic model considered by Stoner, is suppressed due to many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition lowering the density is precluded by the formation of the Wigner crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا