ﻻ يوجد ملخص باللغة العربية
We evaluate the mass polarization term of the kinetic-energy operator for different three-body nuclear $AAB$ systems by employing the method of Faddeev equations in configuration space. For a three-boson system this term is determined by the difference of the doubled binding energy of the $AB$ subsystem $2E_{2}$ and the three-body binding energy $E_{3}(V_{AA}=0)$ when the interaction between the identical particles is omitted. In this case: $leftvert E_{3}(V_{AA}=0)rightvert >2leftvert E_{2}rightvert$. In the case of a system complicated by isospins(spins), such as the kaonic clusters $ K^{-}K^{-}p$ and $ppK^{-}$, the similar evaluation impossible. For these systems it is found that $leftvert E_{3}(V_{AA}=0)rightvert <2leftvert E_{2}rightvert$. A model with an $AB$ potential averaged over spin(isospin) variables transforms the later case to the first one. The mass polarization effect calculated within this model is essential for the kaonic clusters. Besides we have obtained the relation $|E_3|le |2E_2|$ for the binding energy of the kaonic clusters.
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n i
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing
The kaonic clusters $K^{-}K^{-}p$ and $ppK^{-}$ are described based on the configuration space Faddeev equations for $AAB$ system. The $AB$ interaction is given by isospin-dependent potentials. For this isospin model, we show that the relation $leftv
The non-symmetrized hyperspherical harmonics method for a three-body system, composed by two particles having equal masses, but different from the mass of the third particle, is reviewed and applied to the $^3$H, $^3$He nuclei and $^3_{Lambda}$H hype
Recently, many efforts are being put in studying three-hadron systems made of mesons and baryons and interesting results are being found. In this talk, I summarize the main features of the formalism used to study such three hadron systems with strang