ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

56   0   0.0 ( 0 )
 نشر من قبل Miguel de Val-Borro
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 1e-6 Msun/year and wind speeds of 20-50 km/s, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates onto the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

قيم البحث

اقرأ أيضاً

A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stella r wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
The properties of wind accretion in symbiotic X-ray binaries (SyXBs) consisting of red-giant and magnetized neutron star (NS) are discussed. The spin-up/spin-down torques applied to NS are derived based on a hydrodynamic theory of quasi-spherical acc retion onto magnetized NSs. In this model, a settling subsonic accretion proceeds through a hot shell formed around the NS magnetosphere. The accretion rate onto the NS is determined by the ability of the plasma to enter the magnetosphere.Due to large Reynolds numbers in the shell, the interaction of the rotating magnetosphere with plasma initiates a subsonic turbulence. The convective motions are capable of carrying the angular momentum through the shell. We carry out a population synthesis of SyXBs in the Galaxy with account for the spin evolution of magnetized NS. The Galactic number of SyXBs with bright (M_v<1) low-mass red-giant companion is found to be from sim 40 to 120, and their birthrate is sim 5times 10^{-5}-10^{-4} per year. According to our model, among known SyXBs, Sct X-1 and IRXS J180431.1-273932 are wind-fed accretors. GX 1+4 lies in the transition from the wind-fed SyXBs to SyXBs in which the giants overflow their Roche lobe. The model successfully reproduces very long NS spins (such as in IGR J16358-4724 and 4U 1954+31) without the need to invoke very strong magnetic fields.
We present high resolution spectroscopy of the yellow symbiotic star AG Draconis with ESPaDOnS at the {it Canada-France-Hawaii Telescope}. Our analysis is focused on the profiles of Raman scattered ion{O}{VI} features centered at 6825 AA and 7082 AA, which are formed through Raman scattering of ion{O}{VI}$lambdalambda$1032 and 1038 with atomic hydrogen. These features are found to exhibit double component profiles with conspicuously enhanced red parts. Assuming that the ion{O}{vi} emission region constitutes a part of the accretion flow around the white dwarf, Monte Carlo simulations for ion{O}{VI} line radiative transfer are performed to find that the overall profiles are well fit with the accretion flow azimuthally asymmetric with more matter on the entering side than on the opposite side. As the mass loss rate of the giant component is increased, we find that the flux ratio $F(6825)/F(7082)$ of Raman 6825 and 7082 features decreases and that our observational data are consistent with a mass loss rate $dot Msim 2 times 10^{-7} {rm M_{odot} yr^{-1}}$. We also find that additional bipolar components moving away with a speed $sim 70{rm km s^{-1}}$ provide considerably improved fit to the red wing parts of Raman features. The possibility that the two Raman profiles differ is briefly discussed in relation to the local variation of the ion{O}{VI} doublet flux ratio.
We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 10$^{12}$cm$^{-3}$ in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.
(Abridged) We use optical spectroscopy to investigate the disk, wind, and accretion during the 2008 ZCMa NW outburst. Over 1000 optical emission lines reveal accretion, a variable, multi-component wind, and double-peaked lines of disk origin. The var iable, non-axisymmetric, accretion-powered wind has slow ($sim $0 km s$^{-1}$), intermediate ($sim -$100 km s$^{-1}$) and fast ($geq -$400 km s$^{-1}$) components. The fast components are of stellar origin and disappear in quiescence, while the slow component is less variable and could be related to a disk wind. The changes in the optical depth of the lines between outburst and quiescence are consistent with increased accretion being responsible for the observed outburst. We derive an accretion rate of 10$^{-4}$ M$_odot$/yr in outburst. The Fe I and weak Fe II lines arise from an irradiated, flared disk at $sim$0.5-3 $times$M$_*$/16M$_odot$ au with asymmetric upper layers, revealing that the energy from the accretion burst is deposited at scales below 0.5 au. Some line profiles have redshifted asymmetries, but the system is unlikely sustained by magnetospheric accretion, especially in outburst. The accretion-related structures extend over several stellar radii and, like the wind, are likely non-axisymmetric. The stellar mass may be $sim$6-8 M$_odot$, lower than previously thought ($sim$16 M$_odot$). Emission line analysis is found to be a powerful tool to study the innermost regions and accretion in stars within a very large range of effective temperatures. The density ranges in the disk and accretion structures are higher than in late-type stars, but the overall behavior, including the innermost disk emission and variable wind, is very similar independently of the spectral type. Our work suggests a common outburst behavior for stars with spectral types ranging from M-type to intermediate-mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا