ﻻ يوجد ملخص باللغة العربية
Recent numerical simulations showed that the mean flow is generated in inhomogeneous turbulence of an incompressible fluid accompanied with helicity and system rotation. In order to investigate the mechanism of this phenomenon, we carry out a numerical simulation of inhomogeneous turbulence in a rotating system. In the simulation, an external force is applied to inject inhomogeneous turbulent helicity and the rotation axis is taken to be perpendicular to the inhomogeneous direction. No mean velocity is set in the initial condition of the simulation. The simulation results show that only in the case with both the helical forcing and the system rotation, the mean flow directed to the rotation axis is generated and sustained. We investigate the physical origin of this flow-generation phenomenon by considering the budget of the Reynolds-stress transport equation. It is found that the pressure diffusion term has a large contribution in the Reynolds stress equation and supports the generated mean flow. It is shown that a model expression for the pressure diffusion can be expressed by the turbulent helicity gradient coupled with the angular velocity of the system rotation. This implies that inhomogeneous helicity can play a significant role for the generation of the large-scale velocity distribution in incompressible turbulent flows.
We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action o
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas o
We present a model describing evolution of the small-scale Navier-Stokes turbulence due to its stochastic distortions by much larger turbulent scales. This study is motivated by numerical findings (laval, 2001) that such interactions of separated sca
Kraichnan seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very
We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions