ﻻ يوجد ملخص باللغة العربية
TextRank is a variant of PageRank typically used in graphs that represent documents, and where vertices denote terms and edges denote relations between terms. Quite often the relation between terms is simple term co-occurrence within a fixed window of k terms. The output of TextRank when applied iteratively is a score for each vertex, i.e. a term weight, that can be used for information retrieval (IR) just like conventional term frequency based term weights. So far, when computing TextRank term weights over co- occurrence graphs, the window of term co-occurrence is al- ways ?xed. This work departs from this, and considers dy- namically adjusted windows of term co-occurrence that fol- low the document structure on a sentence- and paragraph- level. The resulting TextRank term weights are used in a ranking function that re-ranks 1000 initially returned search results in order to improve the precision of the ranking. Ex- periments with two IR collections show that adjusting the vicinity of term co-occurrence when computing TextRank term weights can lead to gains in early precision.
Most neural Information Retrieval (Neu-IR) models derive query-to-document ranking scores based on term-level matching. Inspired by TileBars, a classical term distribution visualization method, in this paper, we propose a novel Neu-IR model that hand
Automatic language processing tools typically assign to terms so-called weights corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a
When submitting queries to information retrieval (IR) systems, users often have the option of specifying which, if any, of the query terms are heavily dependent on each other and should be treated as a fixed phrase, for instance by placing them betwe
We address the role of a user in Contextual Named Entity Retrieval (CNER), showing (1) that user identification of important context-bearing terms is superior to automated approaches, and (2) that further gains are possible if the user indicates the
This report describes metrics for the evaluation of the effectiveness of segment-based retrieval based on existing binary information retrieval metrics. This metrics are described in the context of a task for the hyperlinking of video segments. This