ترغب بنشر مسار تعليمي؟ اضغط هنا

The entropic regularization of the Monge problem on the real line

43   0   0.0 ( 0 )
 نشر من قبل Jean Louet
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Simone Di Marino




اسأل ChatGPT حول البحث

We study the entropic regularization of the optimal transport problem in dimension 1 when the cost function is the distance c(x, y) = |y -- x|. The selected plan at the limit is, among those which are optimal for the non-penalized problem, the most diffuse one on the zones where it may have a density.

قيم البحث

اقرأ أيضاً

40 - Zuo Quan Xu , Jia-An Yan 2014
The Monge-Kantorovich mass-transportation problem has been shown to be fundamental for various basic problems in analysis and geometry in recent years. Shen and Zheng (2010) proposed a probability method to transform the celebrated Monge-Kantorovich problem in a bounded region of the Euclidean plane into a Dirichlet boundary problem associated to a nonlinear elliptic equation. Their results are original and sound, however, their arguments leading to the main results are skipped and difficult to follow. In the present paper, we adopt a different approach and give a short and easy-followed detailed proof for their main results.
We consider a class of games with continuum of players where equilibria can be obtained by the minimization of a certain functional related to optimal transport as emphasized in [7]. We then use the powerful entropic regularization technique to appro ximate the problem and solve it numerically in various cases. We also consider the extension to some models with several populations of players.
We illustrate the analogue of the Unruh effect for a quantum system on the real line. Our derivation relies solely on basic elements of representation theory of the group of affine transformations without a notion of time or metric. Our result shows that a thermal distribution naturally emerges in connecting quantum states belonging to representations associated to distinct notions of translational symmetry.
In this paper we compare three different orthogonal systems in $mathrm{L}_2(mathbb{R})$ which can be used in the construction of a spectral method for solving the semi-classically scaled time dependent Schrodinger equation on the real line, specifica lly, stretched Fourier functions, Hermite functions and Malmquist--Takenaka functions. All three have banded skew-Hermitian differentiation matrices, which greatly simplifies their implementation in a spectral method, while ensuring that the numerical solution is unitary -- this is essential in order to respect the Born interpretation in quantum mechanics and, as a byproduct, ensures numerical stability with respect to the $mathrm{L}_2(mathbb{R})$ norm. We derive asymptotic approximations of the coefficients for a wave packet in each of these bases, which are extremely accurate in the high frequency regime. We show that the Malmquist--Takenaka basis is superior, in a practical sense, to the more commonly used Hermite functions and stretched Fourier expansions for approximating wave packets
We investigate the kinetic Schrodinger problem, obtained considering Langevin dynamics instead of Brownian motion in Schrodingers thought experiment. Under a quasilinearity assumption we establish exponential entropic turnpike estimates for the corre sponding Schrodinger bridges and exponentially fast convergence of the entropic cost to the sum of the marginal entropies in the long-time regime, which provides as a corollary an entropic Talagrand inequality. In order to do so, we profit from recent advances in the understanding of classical Schrodinger bridges and adaptations of Bakry-Emery formalism to the kinetic setting. Our quantitative results are complemented by basic structural results such as dual representation of the entropic cost and the existence of Schrodinger potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا