ﻻ يوجد ملخص باللغة العربية
Let $Y$ be a sublattice of a vector lattice $X$. We consider the problem of identifying the smallest order closed sublattice of $X$ containing $Y$. It is known that the analogy with topological closure fails. Let $overline{Y}^o$ be the order closure of $Y$ consisting of all order limits of nets of elements from $Y$. Then $overline{Y}^o$ need not be order closed. We show that in many cases the smallest order closed sublattice containing $Y$ is in fact the second order closure $overline{overline{Y}^o}^o$. Moreover, if $X$ is a $sigma$-order complete Banach lattice, then the condition that $overline{Y}^o$ is order closed for every sublattice $Y$ characterizes order continuity of the norm of $X$. The present paper provides a general approach to a fundamental result in financial economics concerning the spanning power of options written on a financial asset.
The Black-Scholes Option pricing model (BSOPM) has long been in use for valuation of equity options to find the prices of stocks. In this work, using BSOPM, we have come up with a comparative analytical approach and numerical technique to find the pr
The classical duality theory of Kantorovich and Kellerer for the classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice $cal
We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and It
In this paper we derive semi-closed form prices of barrier (perhaps, time-dependent) options for the Hull-White model, ie., where the underlying follows a time-dependent OU process with a mean-reverting drift. Our approach is similar to that in (Carr
Given a densely defined and closed operator $A$ acting on a complex Hilbert space $mathcal{H}$, we establish a one-to-one correspondence between its closed extensions and subspaces $mathfrak{M}subsetmathcal{D}(A^*)$, that are closed with respect to t