ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Quenching of $zlesssim2$ Massive Galaxies from the Evolution of the average Sizes of Star-Forming and Quenched Populations in COSMOS

103   0   0.0 ( 0 )
 نشر من قبل Andreas Faisst
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use $>$9400 $log(m/M_{odot})>10$ quiescent and star-forming galaxies at $zlesssim2$ in COSMOS/UltraVISTA to study the average size evolution of these systems, with focus on the rare, ultra-massive population at $log(m/M_{odot})>11.4$. The large 2-square degree survey area delivers a sample of $sim400$ such ultra-massive systems. Accurate sizes are derived using a calibration based on high-resolution images from the Hubble Space Telescope. We find that, at these very high masses, the size evolution of star-forming and quiescent galaxies is almost indistinguishable in terms of normalization and power-law slope. We use this result to investigate possible pathways of quenching massive $m>M^*$ galaxies at $z<2$. We consistently model the size evolution of quiescent galaxies from the star-forming population by assuming different simple models for the suppression of star-formation. These models include an instantaneous and delayed quenching without altering the structure of galaxies and a central starburst followed by compaction. We find that instantaneous quenching reproduces well the observed mass-size relation of massive galaxies at $z>1$. Our starburst$+$compaction model followed by individual growth of the galaxies by minor mergers is preferred over other models without structural change for $log(m/M_{odot})>11.0$ galaxies at $z>0.5$. None of our models is able to meet the observations at $m>M^*$ and $z<1$ with out significant contribution of post-quenching growth of individual galaxies via mergers. We conclude that quenching is a fast process in galaxies with $ m ge 10^{11} M_odot$, and that major mergers likely play a major role in the final steps of their evolution.

قيم البحث

اقرأ أيضاً

We study the rest-frame ultra-violet sizes of massive (~0.8 x 10^11 M_Sun) galaxies at 3.4<z<4.2, selected from the FourStar Galaxy Evolution Survey (ZFOURGE), by fitting single Sersic profiles to HST/WFC3/F160W images from the Cosmic Assembly Near-I nfrared Deep Extragalactic Legacy Survey (CANDELS). Massive quiescent galaxies are very compact, with a median circularized half-light radius r_e = 0.63 +/- 0.18 kpc. Removing 5/16 (31%) sources with signs of AGN activity does not change the result. Star-forming galaxies have r_e = 2.0 +/- 0.60 kpc, 3.2 +/- 1.3 x larger than quiescent galaxies. Quiescent galaxies at z~4 are on average 6.0 +- 0.17 x smaller than at z~0 and 1.9 +/- 0.7 x smaller than at z~2. Star-forming galaxies of the same stellar mass are 2.4 +/- 0.7 x smaller than at z~0. Overall, the size evolution at 0<z<4 is well described by a powerlaw, with r_e = 5.08 +/- 0.28 (1+z)^(-1.44+/-0.08) kpc for quiescent and r_e = 6.02 +/- 0.28 (1+z)^(-0.72+/-0.05) kpc for star-forming galaxies. Compact star-forming galaxies are rare in our sample: we find only 1/14 (7%) with r_e / (M / 10^11 M_Sun)^0.75 < 1.5, whereas 13/16 (81%) of the quiescent galaxies is compact. The number density of compact quiescent galaxies at z~4 is 1.8 +/- 0.8 x 10^-5 Mpc^-3 and increases rapidly, by >5 x, between 2<z<4. The paucity of compact star-forming galaxies at z~4 and their large rest-frame ultra-violet median sizes suggest that the formation phase of compact cores is very short and/or highly dust obscured.
Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over $sim 2 mathrm{deg}^2$ of the COSMOS field. We split the radio source population into Star Forming Galaxies (SFGs) and Active Galactic Nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to $z<1$, we find SFGs have a bias, $b = 1.5 ^{+0.1}_{-0.2}$, at a median redshift of $z=0.62$. On the other hand, AGN are significantly more strongly clustered with $b = 2.1pm 0.2$ at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low-accretion rate AGN are more clustered ($b = 2.9 pm 0.3$) than high-accretion rate AGN ($b = 1.8^{+0.4}_{-0.5}$) at the same redshift ($z sim 0.7$), suggesting that low-accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low-accretion rate AGN appear to reside in halo masses of $M_{h} sim 3-4 times 10^{13}h^{-1}$M$_{odot}$ at all redshifts. On the other hand, the efficient accreters reside in haloes of $M_{h} sim 1-2 times 10^{13}h^{-1}$M$_{odot}$ at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at $z ge 1$ compared to $z<1$.
69 - Stewart Buchan 2016
There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in-situ growth versus later accretion via mergers. In this paper, we set firmer co nstraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3x10^11 Msun reside at the centre of clusters with mass Mhalo>3x10^13 Msun. Spectral analysis supports ages >10 Gyrs, corresponding to a formation redshift z_form >2. We combine these two pieces of observationally-based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at z_form. These findings indicate that either only a relatively minor fraction of their present-day stellar mass was formed in-situ at z_form, or that these massive, central galaxies form in the extreme scenario where almost all of the baryons in the progenitor halo are converted into stars. Interestingly, the latter scenario would not allow for any substantial size growth since the galaxys formation epoch either via mergers or expansion. We show our results hold irrespective of systematic uncertainties in stellar mass, abundances, galaxy merger rates, stellar initial mass function, star formation rate and dark matter accretion histories.
We analyze the colors and sizes of 32 quiescent (UVJ-selected) galaxies with strong Balmer absorption ($mbox{EW}(Hdelta) geq 4$AA) at $zsim0.8$ drawn from DR2 of the LEGA-C survey to test the hypothesis that these galaxies experienced compact, centra l starbursts before quenching. These recently quenched galaxies, usually referred to as post-starburst galaxies, span a wide range of colors and we find a clear correlation between color and half-light radius, such that bluer galaxies are smaller. We build simple toy models to explain this correlation: a normal star-forming disk plus a central, compact starburst component. Bursts with exponential decay timescale of $sim$~100 Myr that produce $sim10%$ to more than 100% of the pre-existing masses can reproduce the observed correlation. More significant bursts also produce bluer and smaller descendants. Our findings imply that when galaxies shut down star formation rapidly, they generally had experienced compact, starburst events and that the large, observed spread in sizes and colors mostly reflects a variety of burst strengths. Recently quenched galaxies should have younger stellar ages in the centers; multi-wavelength data with high spatial resolution are required to reveal the age gradient. Highly dissipative processes should be responsible for this type of formation history. While determining the mechanisms for individual galaxies is challenging, some recently quenched galaxies show signs of gravitational interactions, suggesting that mergers are likely an important mechanism in triggering the rapid shut-down of star-formation activities at $zsim0.8$.
We investigate the velocity vs. position phase space of z ~ 1 cluster galaxies using a set of 424 spectroscopic redshifts in 9 clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories: quiescent, star-forming, and p oststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent ``ring in phase space. Using several zoom simulations of clusters we show that the coherent distribution of the poststarbursts can be reasonably well-reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if satellite quenching occurs on a rapid timescale (0.1 < tau_{Q} < 0.5 Gyr) after galaxies make their first passage of R ~ 0.5R_{200}, a process that takes a total time of ~ 1 Gyr after first infall. We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (tau_{Q} = 0.4^{+0.3}_{-0.4} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid, and occurs well within R_{200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ~ 1 make it difficult to determine if hot or cold gas stripping is dominant; however, measurements of the redshift evolution of the satellite quenching timescale and location may be capable of distinguishing between the two.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا