ﻻ يوجد ملخص باللغة العربية
The latest measurements of CMB electron scattering optical depth reported by Planck significantly reduces the allowed space of HI reionization models, pointing toward a later ending and/or less extended phase transition than previously believed. Reionization impulsively heats the intergalactic medium (IGM) to $sim10^4$ K, and owing to long cooling and dynamical times in the diffuse gas, comparable to the Hubble time, memory of reionization heating is retained. Therefore, a late ending reionization has significant implications for the structure of the $zsim5-6$ Lyman-$alpha$ (ly$alpha$) forest. Using state-of-the-art hydrodynamical simulations that allow us to vary the timing of reionization and its associated heat injection, we argue that extant thermal signatures from reionization can be detected via the Ly$alpha$ forest power spectrum at $5< z<6$. This arises because the small-scale cutoff in the power depends not only the the IGM temperature at these epochs, but is also particularly sensitive to the pressure smoothing scale set by the IGM full thermal history. Comparing our different reionization models with existing measurements of the Ly$alpha$ forest flux power spectrum at $z=5.0-5.4$, we find that models satisfying Plancks $tau_e$, constraint favor a moderate amount of heat injection consistent with galaxies driving reionization, but disfavoring quasar-driven scenarios. We explore the impact of different reionization histories and heating models on the shape of the power spectrum, and find that they can produce similar effects, but argue that this degeneracy can be broken with high enough quality data. We study the feasibility of measuring the flux power spectrum at $zsimeq 6$ using mock quasar spectra and conclude that a sample of $sim10$ high-resolution spectra with an attainable signal-to-noise ratio will allow distinguishing between different reionization scenarios.
Our understanding of the intergalactic medium at redshifts $z=5$-$6$ has improved considerably in the last few years due to the discovery of quasars with $z>6$ that enable Lyman-$alpha$ forest studies at these redshifts. A realisation from this has b
We present a new investigation of the intergalactic medium (IGM) near the end of reionization using dark gaps in the Lyman-alpha (Ly$alpha$) forest. Using spectra of 55 QSOs at $z_{rm em}>5.5$, including new data from the XQR-30 VLT Large Programme,
We present an analysis of the evolution of the Lyman-series forest into the epoch of reionization using cosmological radiative transfer simulations in a scenario where reionization ends late. We explore models with different midpoints of reionization
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $Lambda$CDM model, using the one-dimensional Ly$alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) fr
We present the Lyman-$alpha$ flux power spectrum measurements of the XQ-100 sample of quasar spectra obtained in the context of the European Southern Observatory Large Programme Quasars and their absorption lines: a legacy survey of the high redshift