ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing dynamics of dark energy with latest observations

99   0   0.0 ( 0 )
 نشر من قبل Gong-Bo Zhao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the validity of the $Lambda$CDM model, and probe for the dynamics of dark energy using latest astronomical observations. Using the $Om(z)$ diagnosis, we find that different kinds of observational data are in tension within the $Lambda$CDM framework. We then allow for dynamics of dark energy and investigate the constraint on dark energy parameters. We find that for two different kinds of parametrisations of the equation of state parameter $w$, a combination of current data mildly favours an evolving $w$, although the significance is not sufficient for it to be supported by the Bayesian evidence. A forecast of the DESI survey shows that the dynamics of dark energy could be detected at $7sigma$ confidence level, and will be decisively supported by the Bayesian evidence, if the best fit model of $w$ derived from current data is the true model.

قيم البحث

اقرأ أيضاً

We reconstruct evolution of the dark energy (DE) density using a nonparametric Bayesian approach from a combination of latest observational data. We caution against parameterizing DE in terms of its equation of state as it can be singular in modified gravity models, and using it introduces a bias preventing negative effective DE densities. We find a $3.7sigma$ preference for an evolving effective DE density with interesting features. For example, it oscillates around the $Lambda$CDM prediction at $zlesssim0.7$, and could be negative at $zgtrsim2.3$; dark energy can be pressure-less at multiple redshifts, and a short period of cosmic deceleration is allowed at $0.1 lesssim zlesssim 0.2$. We perform the reconstruction for several choices of the prior, as well as a evidence-weighted reconstruction. We find that some of the dynamical features, such as the oscillatory behaviour of the DE density, are supported by the Bayesian evidence, which is a first detection of a dynamical DE with a positive Bayesian evidence. The evidence-weighted reconstruction prefers a dynamical DE at a $(2.5pm0.06)sigma$ significance level.
A flat Friedman-Roberson-Walker universe dominated by a cosmological constant ($Lambda$) and cold dark matter (CDM) has been the working model preferred by cosmologists since the discovery of cosmic acceleration. However, tensions of various degrees of significance are known to be present among existing datasets within the $Lambda$CDM framework. In particular, the Lyman-$alpha$ forest measurement of the Baryon Acoustic Oscillations (BAO) by the Baryon Oscillation Spectroscopic Survey (BOSS) prefers a smaller value of the matter density fraction $Omega_{rm M}$ compared to the value preferred by cosmic microwave background (CMB). Also, the recently measured value of the Hubble constant, $H_0=73.24pm1.74 {rm km} {rm s}^{-1} {rm Mpc}^{-1}$, is $3.4sigma$ higher than $66.93pm0.62 {rm km} {rm s}^{-1} {rm Mpc}^{-1}$ inferred from the Planck CMB data. In this work, we investigate if these tensions can be interpreted as evidence for a non-constant dynamical dark energy (DE). Using the Kullback-Leibler (KL) divergence to quantify the tension between datasets, we find that the tensions are relieved by an evolving DE, with the dynamical DE model preferred at a $3.5sigma$ significance level based on the improvement in the fit alone. While, at present, the Bayesian evidence for the dynamical DE is insufficient to favour it over $Lambda$CDM, we show that, if the current best fit DE happened to be the true model, it would be decisively detected by the upcoming DESI survey.
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling $b$ by the form $b(a)=b_0a+b_e(1-a)$, where at the early-time the coupling is given by a constant $b_{e}$ and today the coupling is described by another constant $b_{0}$. We explore six specific models with (i) $Q(a)=b(a)H_0rho_0$, (ii) $Q(a)=b(a)H_0rho_{rm de}$, (iii) $Q(a)=b(a)H_0rho_{rm c}$, (iv) $Q(a)=b(a)Hrho_0$, (v) $Q(a)=b(a)Hrho_{rm de}$, and (vi) $Q(a)=b(a)Hrho_{rm c}$. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have $b_0<0$ and $b_e>0$ at around the 1$sigma$ level, and $b_0$ and $b_e$ are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1$sigma$ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.
By combining cosmological probes at low, intermediate and high redshifts, we investigate the observational viability of a class of models with interaction in the dark sector. We perform a Bayesian analysis using the latest data sets of type Ia supern ovae, baryon acoustic oscillations, the angular acoustic scale of the cosmic microwave background, and measurements of the expansion rate. When combined with the current measurement of the local expansion rate obtained by the Hubble Space Telescope, we find that these observations provide evidence in favour of interacting models with respect to the standard cosmology.
103 - G. Pignol 2015
There is a deep connection between cosmology -- the science of the infinitely large --and particle physics -- the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron - - its Electric Dipole Moment and its lifetime -- are intertwined with baryogenesis and nucleosynthesis in the early Universe. I will cover this topic in the first part, that will also serve as an introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then, the rest of the manuscript will be devoted to a new idea: using neutrons to probe models of Dark Energy. In the second part, I will present the chameleon theory: a light scalar field accounting for the late accelerated expansion of the Universe, which interacts with matter in such a way that it does not mediate a fifth force between macroscopic bodies. However, neutrons can alleviate the chameleon mechanism and reveal the presence of the scalar field with properly designed experiments. In the third part, I will describe a recent experiment performed with a neutron interferometer at the Institut Laue Langevin that sets already interesting constraints on the chameleon theory. Last, the chameleon field can be probed by measuring the quantum states of neutrons bouncing over a mirror. In the fourth part I will present the status and prospects of the GRANIT experiment at the ILL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا