ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex lattice melting in a boson-ladder in artificial gauge field

91   0   0.0 ( 0 )
 نشر من قبل Edmond Orignac
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a two-leg boson ladder in an artificial U(1) gauge field and show that, in the presence of interleg attractive interaction, the flux induced Vortex state can be melted by dislocations. For increasing flux, instead of the Meissner to Vortex transition in the commensurate-incommensurate universality class, first an Ising transition from the Meissner state to a charge density wave takes place, then, at higher flux, the melted Vortex phase is established via a disorder point where incommensuration develops in the rung current correlation function and in momentum distribution.Finally, the quasi-long range ordered Vortex phase is recovered for sufficiently small interaction. Our predictions for the observables, such as the spin current and the static structure factor, could be tested in current experiments with cold atoms in bosonic ladders.



قيم البحث

اقرأ أيضاً

113 - R. Citro , S. De Palo , M. Di Dio 2018
We consider a two leg bosonic ladder in a $U(1)$ gauge field with both interleg hopping and interleg repulsion. As a function of the flux, the interleg interaction converts the commensurate-incommensurate transition from the Meissner to a Vortex phas e, into an Ising-type of transition towards a density wave phase. A disorder point is also found after which the correlation functions develop a damped sinusoid behavior signaling a melting of the vortex phase. We discuss the differences on the phase diagram for attractive and repulsive interleg interaction. In particular, we show how repulsion favors the Meissner phase at low-flux and a phase with a second incommensuration in the correlation functions for intermediate flux, leading to a richer phase diagram than in the case of interleg attraction. The effect of the temperature on the chiral current is also discussed.
We consider the Bose-Hubbard model on a two-leg ladder under an artificial magnetic field, and investigate the superfluid-to-Mott insulator transition in this setting. Recently, this system has been experimentally realized [M.Atala textit{et al.}, Na ture Physics textbf{10}, 588--593 (2014)], albeit in a parameter regime that is far from the Mott transition boundary. Depending on the strength of the magnetic field, the single-particle spectrum has either a single ground state or two degenerate ground states. The transition between these two phases is reflected in the many-particle properties. We first investigate these phases through the Bogoliubov approximation in the superfluid regime and calculate the transition boundary for weak interactions. For stronger interactions the system is expected to form a Mott insulator. We calculate the Mott transition boundary as a function of the magnetic field and interleg coupling with mean-field theory, strong-coupling expansion and density matrix renormalization group (DMRG). Finally, using the DMRG, we investigate the particle-hole excitation gaps of this system at different filling factors and find peaks at simple fractions indicating the possibility of correlated phases.
We consider a system of weakly interacting bosons confined on a planar double ring lattice subjected to two artificial gauge fields. We determine its ground state by solving coupled discrete non-linear Schrodinger equations at mean field level. At va rying inter-ring tunnel coupling, flux and interactions we identify the vortex, Meissner and biased-ladder phases also predicted for a bosonic linear ladder by a variational Ansatz. We also find peculiar features associated to the ring geometry, in particular parity effects in the number of vortices, and the appearance of a single vortex in the Meissner phase. We show that the persistent currents on the rings carry precise information on the various phases. Finally, we propose a way of observing the Meissner and vortex phases via spiral interferogram techniques.
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding in the topologically non-trivial bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system.
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex-fluids, vortex-lattices, cha rge-density-waves and the biased-ladder phase. Our work focuses on the subset of these states that break a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux-quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact to recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا