ﻻ يوجد ملخص باللغة العربية
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behavior characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behavior is attributed to collective movement of interacting electrons, which shields individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behavior for designing graphene-based devices.
The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system whose transport features a universal hydrodynamic description, even at room temperature. This quantum critical Dirac fluid is expected to have a she
A hydrodynamic flow of electrons driven by an oscillating electric field is investigated. It is found that a double-peak profile of the electric current can appear. Such a profile originates from the interplay of viscous and inertial properties of th
We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance re
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the
The flow of charge carriers in materials can, under some circumstances, mimic the flow of viscous fluids. In order to visualize the consequences of such effects, new methodologies must be developed that can probe the quasiparticle flow profile with n