ﻻ يوجد ملخص باللغة العربية
Eddy saturation refers to a regime in which the total volume transport of an oceanic current is insensitive to the wind stress strength. Baroclinicity is currently believed to be key to the development of an eddy-saturated state. In this paper, it is shown that eddy saturation can also occur in a purely barotropic flow over topography, without baroclinicity. Thus, eddy saturation is a fundamental property of barotropic dynamics above topography. It is demonstrated that the main factor controlling the appearance or not of eddy-saturated states in the barotropic setting is the structure of geostrophic contours, that is the contours of $f/H$ of the ratio of the Coriolis parameter to the oceans depth. Eddy-saturated states occur when the geostrophic contours are open, that is when the geostrophic contours span the whole zonal extent of the domain. This minimal requirement for eddy-saturated states is demonstrated using numerical integrations of a single-layer quasi-geostrophic flow over two different topographies characterized by either open or closed geostrophic contours with parameter values loosely inspired by the Southern Ocean. In this setting, transient eddies are produced through a barotropic-topographic instability that occurs due tot the interaction of the large-scale zonal flow with the topography. Through the study of this barotropic-topographic instability insight is gained on how eddy-saturated states are established.
Eddy saturation is the regime in which the total time-mean volume transport of an oceanic current is relatively insensitive to the wind stress forcing and is often invoked as a dynamical description of Southern Ocean circulation. We revisit the probl
Eddy saturation describes the nonlinear mechanism in geophysical flows whereby, when average conditions are considered, direct forcing of the zonal flow increases the eddy kinetic energy, while the energy associated with the zonal flow does not incre
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitr
We use dynamical systems approach and Lagrangian tools to study surface transport and mixing of water masses in a selected coastal region of the Japan Sea with moving mesoscale eddies associated with the Primorskoye Current. Lagrangian trajectories a
Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (`zonostrophic instability) which occurs as the turbulence intensity increases. This has been demonstrated usi