ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Enzyme Deployment for Degradation of Interference Molecules in Molecular Communication

54   0   0.0 ( 0 )
 نشر من قبل Huseyin Birkan Yilmaz
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In molecular communication, the heavy tail nature of molecular signals causes inter-symbol interference (ISI). Because of this, it is difficult to decrease symbol periods and achieve high data rate. As a probable solution for ISI mitigation, enzymes were proposed to be used since they are capable of degrading ISI molecules without deteriorating the molecular communication. While most prior work has assumed an infinite amount of enzymes deployed around the channel, from a resource perspective, it is more efficient to deploy a limited amount of enzymes at particular locations and structures. This paper considers carrying out such deployment at two structures--around the receiver (Rx) and/or the transmitter (Tx) site. For both of the deployment scenarios, channels with different system environment parameters, Tx-to-Rx distance, size of enzyme area, and symbol period, are compared with each other for analyzing an optimized system environment for ISI mitigation when a limited amount of enzymes are available.



قيم البحث

اقرأ أيضاً

In this paper, we address the symbol synchronization issue in molecular communication via diffusion (MCvD). Symbol synchronization among chemical sensors and nanomachines is one of the critical challenges to manage complex tasks in the nanonetworks w ith molecular communication (MC). As in diffusion-based MC, most of the molecules arrive at the receptor closer to the start of the symbol duration, the wrong estimation of the start of the symbol interval leads to a high symbol detection error. By utilizing two types of molecules with different diffusion coefficients we propose a synchronization technique for MCvD. Moreover, we evaluate the symbol-error-rate performance under the proposed symbol synchronization scheme for equal and non-equal symbol duration in MCvD systems.
In molecular communication via diffusion (MCvD), the inter-symbol interference (ISI) is a well known severe problem that deteriorates both data rates and link reliability. ISI mainly occurs due to the slow and highly random propagation of the messeng er molecules, which causes the emitted molecules from the previous symbols to interfere with molecules from the current symbol. An effective way to mitigate the ISI is using enzymes to degrade undesired molecules. Prior work on ISI mitigation by enzymes has assumed an infinite amount of enzymes randomly distributed around the molecular channel. Taking a different approach, this paper assumes an MCvD channel with a limited amount of enzymes. The main question this paper addresses is how to deploy these enzymes in an effective structure so that ISI mitigation is maximized. To find an effective MCvD channel environment, this study considers optimization of the shape of the transmitter node, the deployment location and structure, the size of the enzyme deployed area, and the half-lives of the enzymes. It also analyzes the dependence of the optimum size of the enzyme area on the distance and half-life.
Molecular communication between biological entities is a new paradigm in communications. Recently, we studied molecular communication between two nodes formed from synthetic bacteria. Due to high randomness in behavior of bacteria, we used a populati on of them in each node. The reliability of such communication systems depends on both the maximum concentration of molecules that a transmitter node is able to produce at the receiver node as well as the number of bacteria in each nodes. This maximum concentration of molecules falls with distance which makes the communication to the far nodes nearly impossible. In order to alleviate this problem, in this paper, we propose to use a molecular relaying node. The relay node can resend the message either by the different or the same type of molecules as the original signal from the transmitter. We study two scenarios of relaying. In the first scenario, the relay node simply senses the received concentration and forwards it to the receiver. We show that this sense and forward scenario, depending on the type of molecules used for relaying, results in either increasing the range of concentration of molecules at the receiver or increasing the effective number of bacteria in the receiver node. For both cases of sense and forward relaying, we obtain the resulting improvement in channel capacity. We conclude that multi-type molecular relaying outperforms the single-type relaying. In the second scenario, we study the decode and forward relaying for the M-ary signaling scheme. We show that this relaying strategy increases the reliability of M-ary communication significantly.
Molecular communication is a new field of communication where molecules are used to transfer information. Among the proposed methods, molecular communication via diffusion (MCvD) is particularly effective. One of the main challenges in MCvD is the in tersymbol interference (ISI), which inhibits communication at high data rates. Furthermore, at the nano scale, energy efficiency becomes an essential problem. Before addressing these problems, a pre-determined threshold for the received signal must be calculated to make a decision. In this paper, an analytical technique is proposed to determine the optimum threshold, whereas in the literature, these thresholds are generally calculated empirically. Since the main goal of this paper is to build an MCvD system suitable for operating at high data rates without sacrificing quality, new modulation and filtering techniques are proposed to decrease the effects of ISI and enhance energy efficiency. As a transmitter-based solution, a modulation technique for MCvD, molecular transition shift keying (MTSK), is proposed in order to increase the data rate via suppressing the ISI. Furthermore, for energy efficiency, a power adjustment technique that utilizes the residual molecules is proposed. Finally, as a receiver-based solution, a new energy efficient decision feedback filter (DFF) is proposed as a substitute for the decoders such as minimum mean squared error (MMSE) and decision feedback equalizer (DFE). The error performance of DFF and MMSE equalizers are compared in terms of bit error rates, and it is concluded that DFF may be more advantageous when energy efficiency is concerned, due to its lower computational complexity.
In this demonstration, we will present the worlds first molecular multiple-input multiple-output (MIMO) communication link to deliver two data streams in a spatial domain. We show that chemical signals such as concentration gradients could be used in MIMO fashion to transfer sequential data. Until now it was unclear whether MIMO techniques, which are used extensively in modern radio communication, could be applied to molecular communication. In the demonstration, using our devised MIMO apparatus and carefully designed detection algorithm, we will show that we can achieve about 1.7 times higher data rate than single input single output (SISO) molecular communication systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا