ﻻ يوجد ملخص باللغة العربية
We examine the spectral properties of single and multiple matter-wave dark solitons in Bose-Einstein condensates confined in parabolic traps, where the scattering length is periodically modulated. In addition to the large-density limit picture previously established for homogeneous nonlinearities, we explore a perturbative analysis in the vicinity of the linear limit, which provides good agreement with the observed spectral modes. Between these two analytically tractable limits, we use numerical computations to fill in the relevant intermediate regime. We find that the scattering length modulation can cause a variety of features absent for homogeneous nonlinearities. Among them, we note the potential oscillatory instability even of the single dark soliton, the potential absence of instabilities in the immediate vicinity of the linear limit for two dark solitons, and the existence of an exponential instability associated with the in-phase motion of three dark solitons.
In the present work, we explore the existence, stability and dynamics of single and multiple vortex ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states, in the vicinity of the linear
Since the realization of Bose-Einstein condensates (BECs) in optical potentials, intensive experimental and theoretical investigations have been carried out for matter-wave solitons, coherent structures, modulational instability (MI), and nonlinear e
We study stability of solitary vortices in the two-dimensional trapped Bose-Einstein condensate (BEC) with a spatially localized region of self-attraction. Solving the respective Bogoliubov-de Gennes equations and running direct simulations of the un
We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schrodinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g