ﻻ يوجد ملخص باللغة العربية
Many coordination phenomena in Nature are grounded on a synchronisation regime. In the case of brain dynamics, such self-organised process allows the neurons of particular brain regions to behave as a whole and thus directly controlling the neural activity, the muscles and finally the whole human body. However, not always such synchronised collective behaviour is the desired one, this is the case of neurodegenerative diseases such as Parkinsons or epilepsy where abnormal synchronisation induces undesired effects such as tremors and epileptic seizures. In this paper we propose an innovative, minimally invasive, control method able to effectively desynchronise the interested brain zones and thus to reduce the onset of undesired behaviour.
Integrating mobile robots into human society involves the fundamental problem of navigation in crowds. This problem has been studied by considering the behaviour of humans at the level of individuals, but this representation limits the computational
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classificati
We propose a new method for six-degree-of-freedom (6-DoF) autonomous camera movement for minimally invasive surgery, which, unlike previous methods, takes into account both the position and orientation information from structures in the surgical scen
Recent advances in haptic hardware and software technology have generated interest in novel, multimodal interfaces based on the sense of touch. Such interfaces have the potential to revolutionize the way we think about human computer interaction and
Objective: To identify if whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. Methods: We dichotomized a co