ﻻ يوجد ملخص باللغة العربية
We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the open boundary condition can be implemented for this effective lattice system. In doing so, the topological properties of the system can manifest themselves on the edge states, which can be probed from the spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.
Transits of single atoms through higher-order Hermite-Gaussian transverse modes of a high-finesse optical cavity are observed. Compared to the fundamental Gaussian mode, the use of higher-order modes increases the information on the atomic position.
Photons propagating in Laguerre-Gaussian modes have characteristic orbital angular momentums, which are fundamental optical degrees of freedom. The orbital angular momentum of light has potential application in high capacity optical communication and
We propose a scheme comprising an array of anisotropic optical waveguides, embedded in a gas of cold atoms, which can be tuned from a Hermitian to an odd-PT -- symmetric configuration through the manipulation of control and assistant laser fields. We
Defect modes in two-dimensional periodic photonic structures have found use in a highly diverse set of optical devices. For example, photonic crystal cavities confine optical modes to subwavelength volumes and can be used for Purcell enhancement of n
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is