ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-wave dynamics in Permalloy/Cobalt magnonic crystals in the presence of a non-magnetic spacer

112   0   0.0 ( 0 )
 نشر من قبل Maciej Krawczyk
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we theoretically study the influence of a non-magnetic spacer between ferromagnetic dots and ferromagnetic matrix on the frequency dispersion of the spin wave excitations in two-dimensional bi-component magnonic crystals. By means of the dynamical matrix method we investigate structures inhomogeneous across the thickness represented by square arrays of Cobalt or Permalloy dots in a Permalloy matrix. We show that the introduction of a non-magnetic spacer significantly modifies the total internal magnetic field especially at the edges of the grooves and dots. This permits the manipulation of the magnonic band structure of spin waves localized either at the edges of the dots or in matrix material at the edges of grooves. According to the micromagnetic simulations two types of end modes were found. The corresponding frequencies are significantly influenced by the end modes localization region. We also show that, with the use of a single ferromagnetic material, it is possible to design a magnonic crystal preserving properties of bi-component magnonic crystals and magnonic antidot lattices. Finally, the influence of the non-magnetic spacers on the technologically relevant parameters like group velocity and magnonic band width are discussed.

قيم البحث

اقرأ أيضاً

By means of the plane wave method we study spin wave dynamics in two-dimensional bi-component magnonic crystals based on a squeezed hexagonal lattice and consist of a permalloy thin film with cobalt inclusions. We explore the dependence of a spin wav e frequency on the external magnetic field, especially in weak fields where the mode softening takes place. For considered structures, the mode softening proves to be highly non-uniform on both the mode number and the wave vector. We found this effect to be responsible for the omnidirectional band gap opening. Moreover, we show that the enhancement of the demagnetizing field caused by the squeezing of the structure is of crucial importance for the non-uniform mode softening. This allows us to employ this mechanism to design magnonic gaps with different sensitivity for the tiny change of the external field. The effects we have found should be useful in designing and optimization of spin wave filters highly tunable by a small external magnetic field.
We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in t he microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure has been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries is pinned. The micromagnetic simulation based method can also be used to obtain iso--frequency countours of spin waves. Iso--frequency contours are analougous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps has been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations may also prove to be valuable.
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatiall y-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.
Thermally activated domain wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya Interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a con sequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI field-like torque and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermallyinduced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced field-like torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.
We investigate the spin dynamics driven by terahertz magnetic fields in epitaxial thin films of cobalt in its three crystalline phases. The terahertz magnetic field generates a torque on the magnetization which causes it to precess for about 1 ps, wi th a sub-picosecond temporal lag from the driving force. Then, the magnetization undergoes natural damped THz oscillations at a frequency characteristic of the crystalline phase. We describe the experimental observations solving the inertial Landau-Lifshitz-Gilbert equation. Using the results from the relativistic theory of magnetic inertia, we find that the angular momentum relaxation time $eta$ is the only material parameter needed to describe all the experimental evidence. Our experiments suggest a proportionality between $eta$ and the strength of the magneto-crystalline anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا