ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological properties of a dense atomic lattice gas

113   0   0.0 ( 0 )
 نشر من قبل Beatriz Olmos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence of topological phases in a dense two-dimensional atomic lattice gas. The coupling of the atoms to the radiation field gives rise to dissipation and a non-trivial coherent long-range exchange interaction whose form goes beyond a simple power-law. The far-field terms of the potential -- which are particularly relevant for atomic separations comparable to the atomic transition wavelength -- can give rise to energy spectra with one-sided divergences in the Brillouin zone. The long-ranged character of the interactions has another important consequence: it can break of the standard bulk-boundary relation in topological insulators. We show that topological properties such as the transport of an excitation along the edge of the lattice are robust with respect to the presence of lattice defects and dissipation. The latter is of particular relevance as dissipation and coherent interactions are inevitably connected in our setting.



قيم البحث

اقرأ أيضاً

We produce a trimerized kagome lattice for ultracold atoms using an optical superlattice formed by overlaying triangular lattices generated with two colors of light at a 2:1 wavelength ratio. Adjusting the depth of each lattice tunes the strong intra -trimer (J) and weak inter-trimer (J) tunneling energies, and also the on-site interaction energy U. Two different trimerization patterns are distinguished using matter-wave diffraction. We characterize the coherence of a strongly interacting Bose gas in this lattice, observing persistent nearest-neighbor spatial coherence in the large U/J limit, and that such coherence displays asymmetry between the strongly and the weakly coupled bonds.
We consider a quantum theory of elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate (BEC) phase. The dynamics of the optical excitation induced by an incident photon is influenced by the presence of inco herent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Greens function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a non-degenerate atomic sample of the same density and size.
We report investigation of near-resonance light scattering from a cold and dense atomic gas of $^{87}$Rb atoms. Measurements are made for probe frequencies tuned near the $F=2to F=3$ nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.
We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism.
Understanding the rich behavior that emerges from systems of interacting quantum particles, such as electrons in materials, nucleons in nuclei or neutron stars, the quark-gluon plasma, and superfluid liquid helium, requires investigation of systems t hat are clean, accessible, and have tunable parameters. Ultracold quantum gases offer tremendous promise for this application largely due to an unprecedented control over interactions. Specifically, $a$, the two-body scattering length that characterizes the interaction strength, can be tuned to any value. This offers prospects for experimental access to regimes where the behavior is not well understood because interactions are strong, atom-atom correlations are important, mean-field theory is inadequate, and equilibrium may not be reached or perhaps does not even exist. Of particular interest is the unitary gas, where $a$ is infinite, and where many aspects of the system are universal in that they depend only on the particle density and quantum statistics. While the unitary Fermi gas has been the subject of intense experimental and theoretical investigation, the degenerate unitary Bose gas has generally been deemed experimentally inaccessible because of three-body loss rates that increase dramatically with increasing $a$. Here, we investigate dynamics of a unitary Bose gas for timescales that are short compared to the loss. We find that the momentum distribution of the unitary Bose gas evolves on timescales fast compared to losses, and that both the timescale for this evolution and the limiting shape of the momentum distribution are consistent with universal scaling with density. This work demonstrates that a unitary Bose gas can be created and probed dynamically, and thus opens the door for further exploration of this novel strongly interacting quantum liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا