ﻻ يوجد ملخص باللغة العربية
We study atypically large fluctuations of height $H$ in the 1+1-dimensional Kardar-Parisi-Zhang (KPZ) equation at long times $t$, when starting from a droplet initial condition. We derive exact large deviation function of height for $lambda H<0$, where $lambda$ is the nonlinearity coefficient of the KPZ equation. This large deviation function describes a crossover from the Tracy-Widom distribution tail at small $|H|/t$, which scales as $|H|^3/t$, to a different tail at large $|H|/t$, which scales as $|H|^{5/2}/t^{1/2}$. The latter tail exists at all times $t>0$. It was previously obtained in the framework of the optimal fluctuation method. It was also obtained at short times from exact representation of the complete height statistics. The crossover between the two tails, at long times, occurs at $|H|sim t$ as previously conjectured. Our analytical findings are supported by numerical evaluations using exact representation of the complete height statistics.
We use the optimal fluctuation method to evaluate the short-time probability distribution $mathcal{P}left(H,L,tright)$ of height at a single point, $H=hleft(x=0,tright)$, of the evolving Kardar-Parisi-Zhang (KPZ) interface $hleft(x,tright)$ on a ring
We introduce a deterministic SO(3) invariant dynamics of classical spins on a discrete space-time lattice and prove its complete integrability by explicitly finding a related non-constant (baxterized) solution of the set-theoretic quantum Yang-Baxter
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the di
The joint probability distribution function (PDF) of the height and its gradients is derived for a zero tension $d+1$-dimensional Kardar-Parisi-Zhang (KPZ) equation. It is proved that the height`s PDF of zero tension KPZ equation shows lack of positi
We solve the large deviations of the Kardar-Parisi-Zhang (KPZ) equation in one dimension at short time by introducing an approach which combines field theoretical, probabilistic and integrable techniques. We expand the program of the weak noise theor