ﻻ يوجد ملخص باللغة العربية
The electronic and thermal transport properties of the Earths core are crucial for many geophysical models such as the geodynamo model of the Earths magnetic field and of its reversals. Here we show, by considering bcc-iron and iron-rich iron-silicon alloy as a representative of the Earths core composition and applying the first-principles modeling that the spin disorder at the Earths core conditions provides an essential contribution, of order 20~$muOmega$,cm, to the electrical resistivity. This value is comparable in magnitude with the electron-phonon and with the recently estimated electron-electron scattering contributions. The origin of the spin-disorder resistivity (SDR) consists in the existence of fluctuating local moments that are stabilized at high temperatures by the magnetic entropy even at pressures at which the ground state of iron is non-magnetic. We find that electron-phonon and SDR contributions are not additive at high temperatures. We thus observe a large violation of the Matthiessen rule, not common in conventional metallic alloys at ambient conditions.
We report on the thermal and electrical conductivities of two liquid silicon-oxygen-iron mixtures (Fe$_{0.82}$Si$_{0.10}$O$_{0.08}$ and Fe$_{0.79}$Si$_{0.08}$O$_{0.13}$), representative of the composition of the Earths outer core at the relevant pres
We employ state-of-the-art ab initio simulations within the dynamical mean-field theory to study three likely phases of iron (hexogonal close-packed, hcp, face centered cubic, fcc, and body centered cubic, bcc) at the Earths core conditions. We demon
The transport properties of iron under Earths inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions rem
The Earth acts as a gigantic heat engine driven by decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core b
{em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant