ﻻ يوجد ملخص باللغة العربية
We study the transport properties of strongly interacting matter in the context of ultrarelativistic heavy ion collision experiments. We calculate the transport coefficients viz. shear viscosity ($eta$) and electrical conductivity ($sigma_{rm{el}}$) of the quark-gluon plasma phase in the presence of momentum anisotropy arising from different expansion rates of the medium in longitudinal and transverse direction. We solve the relativistic Boltzmann kinetic equation in relaxation time approximation to calculate the shear viscosity and electrical conductivity. The calculations are performed within the quasiparticle model to estimate these transport coefficients and discuss the connection between them. We also compare the electrical conductivity results calculated from the quasiparticle model with the ideal case. We compare our results with the corresponding results obtained in the different lattice as well as model calculations.
The fireball concept of Rolf Hagedorn, developed in the 1960s, is an alternative description of hadronic matter. Using a recently derived mass spectrum, we use the transport model GiBUU to calculate the shear viscosity of a gas of such Hagedorn state
We discuss thw relations between the elastic and inelastic cross-sections valid for the shadow and reflective modes of the elastic scattering. Considerations are based on the unitarity arguments. It is shown that the redistribution of the total inter
We have explored the shear viscosity and electrical conductivity calculations for bosonic and fermionic medium, which goes from without to with magnetic field picture and then their simplified massless expressions. In presence of magnetic field, 5 in
We calculate two transport coefficients -- the shear viscosity over entropy ratio $eta/s$ and the ratio of the electric conductivity to the temperature $sigma_0/T$ -- of strongly interacting quark matter within the extended $N_f=3$ Polyakov Nambu-Jon
Effect of quantum chromodynamics (QCD) interaction in quark-gluon plasma on electrical conductivity is studied, where lattice quantum chromodynamics (LQCD) results are mapped through quark and gluon degeneracy.