ترغب بنشر مسار تعليمي؟ اضغط هنا

The Frequency and Stellar-Mass Dependence of Boxy/Peanut-Shaped Bulges in Barred Galaxies

203   0   0.0 ( 0 )
 نشر من قبل Peter Erwin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From a sample of 84 local barred, moderately inclined disc galaxies, we determine the fraction which host boxy or peanut-shaped (B/P) bulges (the vertically thickened inner parts of bars). We find that the frequency of B/P bulges in barred galaxies is a very strong function of stellar mass: 79% of the bars in galaxies with log (M_{star}/M_{sun}) >~ 10.4 have B/P bulges, while only 12% of those in lower-mass galaxies do. (We find a similar dependence in data published by Yoshino & Yamauchi 2015 for edge-on galaxies.) There are also strong trends with other galaxy parameters -- e.g., Hubble type: 77% of S0-Sbc bars, but only 15% of Sc-Sd bars, have B/P bulges -- but these appear to be side effects of the correlations of these parameters with stellar mass. In particular, despite indications from models that a high gas content can suppress bar buckling, we find no evidence that the (atomic) gas mass ratio M_{atomic}/M_{star} affects the presence of B/P bulges, once the stellar-mass dependence is controlled for. The semi-major axes of B/P bulges range from one-quarter to three-quarters of the full bar size, with a mean of R_{box}/L_{bar} = 0.42 +/- 0.09 and R_{box}/a_{max} = 0.53 +/- 0.12 (where R_{box} is the size of the B/P bulge and a_{max} and L_{bar} are lower and upper limits on the size of the bar).



قيم البحث

اقرأ أيضاً

116 - Martinez-Valpuesta , I. 2008
Boxy/peanut bulges in disc galaxies have been associated to stellar bars. We analyse their properties in a large sample of $N$-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare t he results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.
Vertically thickened bars, observed in the form of boxy/peanut (B/P) bulges, are found in the majority of massive barred disc galaxies in the local Universe, including our own. B/P bulges indicate that their host bars have suffered violent bending in stabilities driven by anisotropic velocity distributions. We investigate for the first time how the frequency of B/P bulges in barred galaxies evolves from $z = 1$ to $zapprox 0$, using a large sample of non-edge-on galaxies with masses $M_{star} > 10^{10}:M_{odot}$, selected from the HST COSMOS survey. We find the observed fraction increases from $0^{+3.6}_{-0.0}%$ at $z = 1$ to $37.8^{+5.4}_{-5.1}%$ at $z = 0.2$. We account for problems identifying B/P bulges in galaxies with low inclinations and unfavourable bar orientations, and due to redshift-dependent observational biases with the help of a sample from the Sloan Digital Sky Survey, matched in resolution, rest-frame band, signal-to-noise ratio and stellar mass and analysed in the same fashion. From this, we estimate that the true fraction of barred galaxies with B/P bulges increases from $sim 10%$ at $z approx 1$ to $sim 70%$ at $z = 0$. In agreement with previous results for nearby galaxies, we find a strong dependence of the presence of a B/P bulge on galaxy stellar mass. This trend is observed in both local and high-redshift galaxies, indicating that it is an important indicator of vertical instabilities across a large fraction of the age of the Universe. We propose that galaxy formation processes regulate the thickness of galaxy discs, which in turn affect which galaxies experience violent bending instabilities of the bar.
106 - J. Mendez-Abreu 2010
We present high resolution absorption-line spectroscopy of 3 face-on galaxies, NGC 98, NGC 600, and NGC 1703 with the aim of searching for box/peanut (B/P)-shaped bulges. These observations test and confirm the prediction of Debattista et al. (2005) that face-on B/P-shaped bulges can be recognized by a double minimum in the profile of the fourth-order Gauss-Hermite moment h_4. In NGC 1703, which is an unbarred control galaxy, we found no evidence of a B/P bulge. In NGC 98, a clear double minimum in h_4 is present along the major axis of the bar and before the end of the bar, as predicted. In contrast, in NGC 600, which is also a barred galaxy but lacks a substantial bulge, we do not find a significant B/P shape.
83 - Junichi Baba NAOJ 2021
Some of barred galaxies, including the Milky Way, host a boxy/peanut/X-shaped bulge (BPX-shaped bulge). Previous studiessuggested that the BPX-shaped bulge can either be developed by bar buckling or by vertical inner Lindblad resonance (vILR)heating without buckling. In this paper, we study the observable consequence of an BPX-shaped bulge built up quickly after barformation via vILR heating without buckling, using anN-body/hydrodynamics simulation of an isolated Milky Way-like galaxy.We found that the BPX-shaped bulge is dominated by stars born prior to bar formation. This is because the bar suppresses starformation, except for the nuclear stellar disc (NSD) region and its tips. The stars formed near the bar ends have higher Jacobienergy, and when these stars lose their angular momentum, their radial action increases to conserve Jacobi energy. This preventsthem from reaching the vILR to be heated to the BPX region. By contrast, the NSD forms after the bar formation. From thissimulation and general considerations, we expect that the age distributions of the NSD and BPX-shaped bulge formed withoutbar buckling do not overlap each other. Then, the transition age between these components betrays the formation time of the bar, and is testable in future observations of the Milky Way and extra-galactic barred galaxies
We present SAURON integral-field observations of a sample of 12 mid to high-inclination disk galaxies, to unveil hidden bars on the basis of their kinematics, i.e., the correlation between velocity and h3 profiles, and to establish their degree of cy lindrical rotation. For the latter, we introduce a method to quantify cylindrical rotation that is robust against inner disk components. We confirm high-levels of cylindrical rotation in boxy/peanut bulges, but also observe this feature in a few galaxies with rounder bulges. We suggest that these are also barred galaxies with end-on orientations. Re-analysing published data for our own Galaxy using this new method, we determine that the Milky Way bulge is cylindrically rotating at the same level as the strongest barred galaxy in our sample. Finally, we use self-consistent three-dimensional N-body simulations of bar-unstable disks to study the dependence of cylindrical rotation on the bars orientation and host galaxy inclination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا