ﻻ يوجد ملخص باللغة العربية
In the two-parameter setting, we say a function belongs to the mean little $BMO$, if its mean over any interval and with respect to any of the two variables has uniformly bounded mean oscillation. This space has been recently introduced by S. Pott and the author in relation with the multiplier algebra of the product $BMO$ of Chang-Fefferman. We prove that the Cotlar-Sadosky space of functions of bounded mean oscillation $bmo(mathbb{T}^N)$ is a strict subspace of the mean little $BMO$.
We establish a connection between the function space BMO and the theory of quasisymmetric mappings on emph{spaces of homogeneous type} $widetilde{X} :=(X,rho,mu)$. The connection is that the logarithm of the generalised Jacobian of an $eta$-quasisymm
In this paper, we first study the bounded mean oscillation of planar harmonic mappings, then a relationship between Lipschitz-type spaces and equivalent modulus of real harmonic mappings is established. At last, we obtain sharp estimates on Lipschitz
In this article we show that extendability from one side of a simple analytic curve is a rare phenomenon in the topological sense in various spaces of functions. Our result can be proven using Fourier methods combined with other facts or by complex a
In the current paper, we study how the speed of convergence of a sequence of angles decreasing to zero influences the possibility of constructing a rare differentiation basis of rectangles in the plane, one side of which makes with the horizontal axi
We give a direct evaluation of a curious integral identity, which follows from the work of Ismail and Valent on the Nevanlinna parametrization of solutions to a certain indeterminate moment problem.