ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

101   0   0.0 ( 0 )
 نشر من قبل Kevin Coughlin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 $mu textrm{m}$ thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects $sim$50% of the incoming light and blocks textgreater 99.8% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.


قيم البحث

اقرأ أيضاً

Broadband refractive optics realized from high index materials provide compelling design solutions for the next generation of observatories for the Cosmic Microwave Background (CMB), and for sub-millimeter astronomy. In this paper, work is presented which extends the state of the art in silicon lenses with metamaterial antireflection (AR) coatings towards larger bandwidth and higher frequency operation. Examples presented include octave bandwidth coatings with less than $0.5%$ reflection, a prototype 4:1 bandwidth coating, and a coating optimized for 1.4 THz. For these coatings the detailed design, fabrication and testing processes are described as well as the inherent performance trade offs.
Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared fil ters supported by mechanical coolers scale insufficiently with aperture size. Reflective metal-mesh filters placed behind the telescope window provide a scalable solution in principle, but have been limited by photolithography constraints to diameters under 300 mm. We present laser etching as an alternate technique to photolithography for fabrication of large-area reflective filters, and show results from lab tests of 500 mm-diameter filters. Filters with up to 700 mm diameter can be fabricated using laser etching with existing capability.
The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half wave plates (HWPs) in front of polarization sensitive detectors. Large operational bandwidths are required when th e same device is meant to work simultaneously across different frequency bands. Previous realizations of half wave plates, ranging from birefringent multi-plate to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and the experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization and it is based on the different phase-shift experienced by two orthogonal polarizations respectively reflecting off an electric conductor and off an artificial magnetic conductor.
Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing pla nar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology has many potential advantages compared to conventional hemispherical lenslet arrays, including high precision and homogeneity, planar integrated anti-reflection layers, and a coefficient of thermal expansion matched to the silicon detector wafer. Here we describe the design process for a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on silicon and a combination of metal-mesh and etched-hole metamaterial anti-reflection layers. We optimize the design using a bulk-material model to rapidly simulate and iterate on the lenslet design. We fabricated prototype GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array 90/150~GHz band transition edge sensor (TES) bolometer detector array with sinuous planar antennas. Beam measurements of a prototype lenslet array agree reasonably well with the model simulations. We plan to further optimize the design and combine it with a broadband anti-reflection coating to achieve operation over 70--350~GHz bandwidth.
The next generations of ground-based cosmic microwave background experiments will require polarisation sensitive, multichroic pixels of large focal planes comprising several thousand detectors operating at the photon noise limit. One approach to achi eve this goal is to couple light from the telescope to a polarisation sensitive antenna structure connected to a superconducting diplexer network where the desired frequency bands are filtered before being fed to individual ultra-sensitive detectors such as Transition Edge Sensors. Traditionally, arrays constituted of horn antennas, planar phased antennas or anti-reflection coated micro-lenses have been placed in front of planar antenna structures to achieve the gain required to couple efficiently to the telescope optics. In this paper are presented the design concept and a preliminary analysis of the measured performances of a phase-engineered metamaterial flat-lenslet. The flat lens design is inherently matched to free space, avoiding the necessity of an anti-reflection coating layer. It can be fabricated lithographically, making scaling to large format arrays relatively simple. Furthermore, this technology is compatible with the fabrication process required for the production of large-format lumped element kinetic inductance detector arrays which have already demonstrated the required sensitivity along with multiplexing ratios of order 1000 detectors/channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا