ﻻ يوجد ملخص باللغة العربية
Blue supergiant stars of B and A spectral types are amongst the visually brightest non-transient astronomical objects. Their intrinsic brightness makes it possible to obtain high quality optical spectra of these objects in distant galaxies, enabling the study not only of these stars in different environments, but also to use them as tools to probe their host galaxies. Quantitative analysis of their optical spectra provide tight constraints on their evolution in a wide range of metallicities, as well as on the present-day chemical composition, extinction laws and distances to their host galaxies. We review in this contribution recent results in this field.
The mass-loss rates of red supergiant stars (RSGs) are poorly constrained by direct measurements, and yet the subsequent evolution of these stars depends critically on how much mass is lost during the RSG phase. In 2012 the Geneva evolutionary group
The characterisation of the multiplicity of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until
We report mid- to far-infrared imaging and photomety from 7 to 37 microns with SOFIA/FORCAST and 2 micron adaptive optics imaging with LBTI/LMIRCam of a large sample of red supergiants (RSGs) in four Galactic clusters; RSGC1, RSGC2=Stephenson 2, RSGC
The aim of this paper is to establish a complete sample of red supergiants (RSGs) in M31 and M33. The member stars of the two galaxies are selected from the near-infrared (NIR) point sources after removing the foreground dwarfs from their obvious bra
Based on previously selected preliminary samples of Red Supergiants (RSGs) in M33 and M31, the foreground stars and luminous Asymptotic Giant Branch stars (AGBs) are further excluded, which leads to the samples of 717 RSGs in M33 and 420 RSGs in M31.