ﻻ يوجد ملخص باللغة العربية
The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded $sim 1900$ CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011 to 2015) of 0.58% per year, but large spatial variations are present. Using the nonparametric Demons method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0.09 to 0.44 per year. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities $v_s$ as low as 3,600 km/s (for an assumed distance of 8.5 kpc), much less than $v_s = 12,000 - 13,000$ km/s along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially-integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 years, we measure its increase at 1.3% +/- 0.8% per year. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.
We report measurements of X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger t
We report the discovery of thermal X-ray emission from the youngest Galactic supernova remnant G1.9+0.3, from a 237-ks Chandra observation. We detect strong K-shell lines of Si, S, Ar, Ca, and Fe. In addition, we detect a 4.1 keV line with 99.971% co
Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ~100 yrs and inferred shock sp
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR) and dominated by X-ray synchrotron emission. Synchrotron X-rays can be a useful tool to study the electron acceleration in young SNRs. The X-ray spectra of young SNRs give us information