ﻻ يوجد ملخص باللغة العربية
We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as super-excited states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called calm excited states as well. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.
Big Bang Nucleosynthesis imposes stringent bounds on light sterile neutrinos mixing with the active flavors. Here we discuss how altered dispersion relations can weaken such bounds and allow compatibility of new sterile neutrino degrees of freedom wi
Modified dispersion relations from effective field theory are shown to alter the Chandrasekhar mass limit. At exceptionally high densities, the modifications affect the pressure of a degenerate electron gas and can increase or decrease the mass limit
We describe the Hamilton geometry of the phase space of particles whose motion is characterised by general dispersion relations. In this framework spacetime and momentum space are naturally curved and intertwined, allowing for a simultaneous descript
Quantum gravity phenomenology suggests an effective modification of the general relativistic dispersion relation of freely falling point particles caused by an underlying theory of quantum gravity. Here we analyse the consequences of modifications of
We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t Hooft coupling and at order $1/N^4$, as a way to access one-loop effects in the dual supergravity theory. From these singularities