ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material

84   0   0.0 ( 0 )
 نشر من قبل Amy Bonsor
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared excesses around metal polluted white dwarfs have been associated with the accretion of dusty, planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3% can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of $T_{in} = 1,400$K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30%. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: i) their dust discs are opaque, but narrow, thus evading detection if more than 85% of polluted white dwarfs have dust discs narrower than $delta r< 0.04r$, ii) their dust discs have been fully consumed, which only works for the oldest white dwarfs with sinking timescales longer than hundreds of years, iii) their dust is optically thin, which can supply low accretion rates of $<10^7 $gs$^{-1}$ if dominated by PR-drag, and higher accretion rates, if inwards transport of material is enhanced, for example due to the presence of gas, iv) their accretion is supplied by a pure gas disc, which could result from the sublimation of optically thin dust for T* > 20, 000K. Future observations sensitive to faint infrared excesses or the presence of gas, can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.

قيم البحث

اقرأ أيضاً

99 - J. Debes , K. Walsh , C. Stark 2012
It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not ye t been fully posited. In this paper we demonstrate that mass loss from a central star during post main sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the Solar System show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.
The photospheres of some white dwarfs are polluted by accretion of material from their surrounding planetary debris. White dwarfs with dust disks are often heavily polluted and high-resolution spectroscopic observations of these systems can be used t o infer the chemical compositions of extrasolar planetary material. Here, we report spectroscopic observation and analysis of 19 white dwarfs with dust disks or candidate disks. The overall abundance pattern very much resembles that of bulk Earth and we are starting to build a large enough sample to probe a wide range of planetary compositions. We found evidence for accretion of Fe-rich material onto two white dwarfs as well as O-rich but H-poor planetary debris onto one white dwarf. In addition, there is a spread in Mg/Ca and Si/Ca ratios and it cannot be explained by differential settling or igneous differentiation. The ratios appear to follow an evaporation sequence. In this scenario, we can constrain the mass and number of evaporating bodies surrounding polluted white dwarfs.
White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by conside ring the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000K to higher than 1,400K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3sigma significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.
121 - C. Melis 2010
We have performed a comprehensive ground-based observational program aimed at characterizing the circumstellar material orbiting three single white dwarf stars previously known to possess gaseous disks. Near-infrared imaging unambiguously detects exc ess infrared emission towards Ton 345 and allows us to refine models for the circumstellar dust around all three white dwarf stars. We find that each white dwarf hosts gaseous and dusty disks that are roughly spatially coincident, a result that is consistent with a scenario in which dusty and gaseous material has its origin in remnant parent bodies of the white dwarfs planetary systems. We briefly describe a new model for the gas disk heating mechanism in which the gaseous material behaves like a Z II region. In this Z II region, gas primarily composed of metals is photoionized by ultraviolet light and cools through optically thick allowed Ca II-line emission.
ALMA Cycle 0 and Herschel PACS observations are reported for the prototype, nearest, and brightest example of a dusty and polluted white dwarf, G29-38. These long wavelength programs attempted to detect an outlying, parent population of bodies at 1-1 00 AU, from which originates the disrupted planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L = 0.039. No associated emission sources were detected in any of the data down to L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g for reasonable grain sizes and properties in orbital regions corresponding to evolv
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا