ﻻ يوجد ملخص باللغة العربية
We demonstrate that the confinement of half-quantized vortices (HQVs) in coherently coupled Bose-Einstein condensates (BECs) simulates certain aspects of the confinement in $SU(2)$ quantum chromodynamics (QCD) in 2+1 space-time dimensions. By identifying the circulation of superfluid velocity as the baryon number and the relative phase between two components as a dual gluon, we identify HQVs in a single component as electrically charged particles with a half baryon number. Further, we show that only singlet states of the relative phase of two components can stably exist as bound states of vortices, that is, a pair of vortices in each component (a baryon) and a pair of a vortex and an antivortex in the same component (a meson). We then study the dynamics of a baryon and meson; baryon is static at the equilibrium and rotates once it deviates from the equilibrium, while a meson moves with constant velocity. For both baryon and meson we verify a linear confinement and determine that they are broken, thus creating other baryons or mesons in the middle when two constituent vortices are separated by more than some critical distance, resembling QCD.
The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two
In the presence of a laser-induced spin-orbit coupling an interacting ultra cold spinor Bose-Einstein condensate may acquire a quasi-relativistic character described by a non-linear Dirac-like equation. We show that as a result of the spin-orbit coup
We present a self-consistent study of coherently coupled two-component Bose-Einstein condensates. Finite spin-flipping coupling changes the first order demixing phase transition for Bose-Bose mixtures to a second order phase transition between an unp
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonali
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is