ﻻ يوجد ملخص باللغة العربية
Segmenting human left ventricle (LV) in magnetic resonance imaging (MRI) images and calculating its volume are important for diagnosing cardiac diseases. In 2016, Kaggle organized a competition to estimate the volume of LV from MRI images. The dataset consisted of a large number of cases, but only provided systole and diastole volumes as labels. We designed a system based on neural networks to solve this problem. It began with a detector combined with a neural network classifier for detecting regions of interest (ROIs) containing LV chambers. Then a deep neural network named hypercolumns fully convolutional network was used to segment LV in ROIs. The 2D segmentation results were integrated across different images to estimate the volume. With ground-truth volume labels, this model was trained end-to-end. To improve the result, an additional dataset with only segmentation label was used. The model was trained alternately on these two datasets with different types of teaching signals. We also proposed a variance estimation method for the final prediction. Our algorithm ranked the 4th on the test set in this competition.
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical p
Recently, machine learning has been successfully applied to model-based left ventricle (LV) segmentation. The general framework involves two stages, which starts with LV localization and is followed by boundary delineation. Both are driven by supervi
Image representations, from SIFT and bag of visual words to Convolutional Neural Networks (CNNs) are a crucial component of almost all computer vision systems. However, our understanding of them remains limited. In this paper we study several landmar
In recent years, much research has been conducted on image super-resolution (SR). To the best of our knowledge, however, few SR methods were concerned with compressed images. The SR of compressed images is a challenging task due to the complicated co
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less sp