ترغب بنشر مسار تعليمي؟ اضغط هنا

On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation

159   0   0.0 ( 0 )
 نشر من قبل Tommaso Cavallari
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Camera relocalisation is an important problem in computer vision, with applications in simultaneous localisation and mapping, virtual/augmented reality and navigation. Common techniques either match the current image against keyframes with known poses coming from a tracker, or establish 2D-to-3D correspondences between keypoints in the current image and points in the scene in order to estimate the camera pose. Recently, regression forests have become a popular alternative to establish such correspondences. They achieve accurate results, but must be trained offline on the target scene, preventing relocalisation in new environments. In this paper, we show how to circumvent this limitation by adapting a pre-trained forest to a new scene on the fly. Our adapted forests achieve relocalisation performance that is on par with that of offline forests, and our approach runs in under 150ms, making it desirable for real-time systems that require online relocalisation.



قيم البحث

اقرأ أيضاً

Many applications require a camera to be relocalised online, without expensive offline training on the target scene. Whilst both keyframe and sparse keypoint matching methods can be used online, the former often fail away from the training trajectory , and the latter can struggle in textureless regions. By contrast, scene coordinate regression (SCoRe) methods generalise to novel poses and can leverage dense correspondences to improve robustness, and recent work has shown how to adapt SCoRe forests between scenes, allowing their state-of-the-art performance to be leveraged online. However, because they use features hand-crafted for indoor use, they do not generalise well to harder outdoor scenes. Whilst replacing the forest with a neural network and learning suitable features for outdoor use is possible, the techniques used to adapt forests between scenes are unfortunately harder to transfer to a network context. In this paper, we address this by proposing a novel way of leveraging a network trained on one scene to predict points in another scene. Our approach replaces the appearance clustering performed by the branching structure of a regression forest with a two-step process that first uses the network to predict points in the original scene, and then uses these predicted points to look up clusters of points from the new scene. We show experimentally that our online approach achieves state-of-the-art performance on both the 7-Scenes and Cambridge Landmarks datasets, whilst running in under 300ms, making it highly effective in live scenarios.
Camera relocalization plays a vital role in many robotics and computer vision tasks, such as global localization, recovery from tracking failure, and loop closure detection. Recent random forests based methods directly predict 3D world locations for 2D image locations to guide the camera pose optimization. During training, each tree greedily splits the samples to minimize the spatial variance. However, these greedy splits often produce uneven sub-trees in training or incorrect 2D-3D correspondences in testing. To address these problems, we propose a sample-balanced objective to encourage equal numbers of samples in the left and right sub-trees, and a novel backtracking scheme to remedy the incorrect 2D-3D correspondence predictions. Furthermore, we extend the regression forests based methods to use local features in both training and testing stages for outdoor RGB-only applications. Experimental results on publicly available indoor and outdoor datasets demonstrate the efficacy of our approach, which shows superior or on-par accuracy with several state-of-the-art methods.
Camera relocalization plays a vital role in many robotics and computer vision tasks, such as global localization, recovery from tracking failure and loop closure detection. Recent random forests based methods exploit randomly sampled pixel comparison features to predict 3D world locations for 2D image locations to guide the camera pose optimization. However, these image features are only sampled randomly in the images, without considering the spatial structures or geometric information, leading to large errors or failure cases with the existence of poorly textured areas or in motion blur. Line segment features are more robust in these environments. In this work, we propose to jointly exploit points and lines within the framework of uncertainty driven regression forests. The proposed approach is thoroughly evaluated on three publicly available datasets against several strong state-of-the-art baselines in terms of several different error metrics. Experimental results prove the efficacy of our method, showing superior or on-par state-of-the-art performance.
This work addresses the task of camera localization in a known 3D scene given a single input RGB image. State-of-the-art approaches accomplish this in two steps: firstly, regressing for every pixel in the image its 3D scene coordinate and subsequentl y, using these coordinates to estimate the final 6D camera pose via RANSAC. To solve the first step, Random Forests (RFs) are typically used. On the other hand, Neural Networks (NNs) reign in many dense regression tasks, but are not test-time efficient. We ask the question: which of the two is best for camera localization? To address this, we make two method contributions: (1) a test-time efficient NN architecture which we term a ForestNet that is derived and initialized from a RF, and (2) a new fully-differentiable robust averaging technique for regression ensembles which can be trained end-to-end with a NN. Our experimental findings show that for scene coordinate regression, traditional NN architectures are superior to test-time efficient RFs and ForestNets, however, this does not translate to final 6D camera pose accuracy where RFs and ForestNets perform slightly better. To summarize, our best method, a ForestNet with a robust average, which has an equivalent fast and lightweight RF, improves over the state-of-the-art for camera localization on the 7-Scenes dataset. While this work focuses on scene coordinate regression for camera localization, our innovations may also be applied to other continuous regression tasks.
In this paper, we address the problem of camera pose estimation in outdoor and indoor scenarios. In comparison to the currently top-performing methods that rely on 2D to 3D matching, we propose a model that can directly regress the camera pose from i mages with significantly higher accuracy than existing methods of the same class. We first analyse why regression methods are still behind the state-of-the-art, and we bridge the performance gap with our new approach. Specifically, we propose a way to overcome the biased training data by a novel training technique, which generates poses guided by a probability distribution from the training set for synthesising new training views. Lastly, we evaluate our approach on two widely used benchmarks and show that it achieves significantly improved performance compared to prior regression-based methods, retrieval techniques as well as 3D pipelines with local feature matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا