ﻻ يوجد ملخص باللغة العربية
SN 1006 (G327.6+14.6) was the brightest supernova (SN) witnessed in human history. As of one thousand years later, it stands out as an ideal laboratory to study Type Ia SNe and shocks in supernova remnants (SNRs). The present state of knowledge about SN 1006 is reviewed in this article. No star consistent with a surviving companion expected in the traditional single-degenerate scenario has been found, which favors a double-degenerate scenario for the progenitor of SN 1006. Both unshocked and shocked SN ejecta have been probed through absorption lines in ultraviolet spectra of background sources and thermal X-ray emission, respectively. The absorption studies suggest that the amount of iron is < 0.16 M_sun, which is significantly less than the range for normal SNe Ia. On the other hand, analyses of X-ray data reveal the distribution of shocked ejecta to be highly asymmetric especially for iron. Therefore, most of iron might have escaped from the ultraviolet background sources. Another important aspect with SN 1006 is that it was the first SNR in which synchrotron X-ray emission was detected from shells of the remnant, providing evidence that electrons are accelerated up to ~100 TeV energies at forward shocks. The bilateral symmetry of the synchrotron emission (bright in northeastern and southwestern limbs) is likely due to a polar cap geometry. The broadband (radio, X-ray, and gamma-ray) spectral energy distribution suggests that the gamma-ray emission is predominantly leptonic. At the northwestern shock, evidence for extreme, but less than mass proportional, temperature non-equilibration has been found by optical, ultraviolet, and X-ray observations.
The recently published Yemeni observing report about SN 1006 from al-Yamani clearly gives AD 1006 Apr $17 pm 2$ (mid-Rajab 396h) as first observation date. Since this is about 1.5 weeks earlier than the otherwise earliest reports (Apr 28 or 30) as di
We present two Arabic texts of historic observations of supernova SN 1006 from Yemen as reported by al-Yamani and Ibn al-Dayba (14th to 16th century AD). An English translation of the report by the latter was given before (Stephenson & Green 2002), b
We present the results from deep X-ray observations (~400 ks in total) of SN 1006 by the X-ray astronomy satellite Suzaku. The thermal spectrum from the entire supernova remnant (SNR) exhibits prominent emission lines of O, Ne, Mg, Si, S, Ar, Ca, and
We present here an Arabic report about supernova 1006 (SN 1006) written by the famous Persian scholar Ibn Sina (Lat. Avicenna, AD 980-1037), which was not discussed in astronomical literature before. The short observational report about a new star is
We present the deepest optical spectrum acquired to date of Balmer-dominated shocks in the NW rim of SN 1006. We detect the broad and narrow components of H-alpha, H-beta and H-gamma and report the first detection of the He I 6678 emission line in th