ترغب بنشر مسار تعليمي؟ اضغط هنا

A Reconfigurable Active Huygens Metalens

449   0   0.0 ( 0 )
 نشر من قبل Yijun Feng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metasurfaces enable a new paradigm of controlling electromagnetic waves by manipulating subwavelength artificial structures within just a fraction of wavelength. Despite the rapid growth, simultaneously achieving low-dimensionality, high transmission efficiency, real-time continuous reconfigurability, and a wide variety of re-programmable functions are still very challenging, forcing researchers to realize just one or few of the aforementioned features in one design. In this study, we report a subwavelength reconfigurable Huygens metasurface realized by loading it with controllable active elements. Our proposed design provides a unified solution to the aforementioned challenges of real-time local reconfigurability of efficient Huygens metasurfaces. As one exemplary demonstration, we experimentally realized a reconfigurable metalens at the microwave frequencies which, to our best knowledge, demonstrates for the first time that multiple and complex focal spots can be controlled simultaneously at distinct spatial positions and re-programmable in any desired fashion, with fast response time and high efficiency. The presented active Huygens metalens may offer unprecedented potentials for real-time, fast, and sophisticated electromagnetic wave manipulation such as dynamic holography, focusing, beam shaping/steering, imaging and active emission control.

قيم البحث

اقرأ أيضاً

Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, a nd efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2$pi$ range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling switching of metasurfaces between two arbitrary phase profiles and propose a new figure-of-merit (FOM) tailored for active meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 $mu$m wavelength. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast ($Delta$ n > 1) and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio of 29.5 dB. We further validated aberration-free imaging using the metalens at both optical states, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.
The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and are implemented based on the nanopatterning of an optical surface. The challenge faced by metalens research is to reach high levels of performance, using simple fabrication methods suitable for mass-production. In this paper we present a Huygens nanoantenna based metalens, designed for outdoor photographic/surveillance applications in the near-infra-red. We show that good imaging quality can be obtained over a field-of-view (FOV) as large as +/-15 degrees. This first successful implementation of metalenses for outdoor imaging applications is expected to provide insight and inspiration for future metalens imaging applications.
Guided-wave plasmonic circuits are promising platforms for sensing, interconnection, and quantum applications in the sub-diffraction regime. Nonetheless, the loss-confinement trade-off remains a collective bottleneck for plasmonic-enhanced optical pr ocesses. Here, we report a unique plasmonic waveguide that can alleviate such trade-off and improve the efficiencies of plasmonic-based emission, light-matter-interaction, and detection simultaneously. Through different bias configurations, record experimental attributes such as normalized Purcell factor approaching 10^4, 10-dB amplitude modulation with <1 dB insertion loss and fJ-level switching energy, and photodetection sensitivity and internal quantum efficiency of -54 dBm and 6.4 % respectively can be realized within the same amorphous-based plasmonic structure. The ability to support multiple optoelectronic phenomena while providing performance gains over existing plasmonic and dielectric counterparts offers a clear path towards reconfigurable, monolithic plasmonic circuits.
Optical metasurfaces have shown to be a powerful approach to planar optical elements, enabling an unprecedented control over light phase and amplitude. At that stage, where wide variety of static functionalities have been accomplished, most efforts a re being directed towards achieving reconfigurable optical elements. Here, we present our approach to an electrically controlled varifocal metalens operating in the visible frequency range. It relies on dynamically controlling the refractive index environment of a silicon metalens by means of an electric resistor embedded into a thermo-optical polymer. We demonstrate precise and continuous tuneability of the focal length and achieve focal length variation larger than the Rayleigh length for voltage as small as 12 volts. The system time-response is of the order of 100 ms, with the potential to be reduced with further integration. Finally, the imaging capability of our varifocal metalens is successfully validated in an optical microscopy setting. Compared to conventional bulky reconfigurable lenses, the presented technology is a lightweight and compact solution, offering new opportunities for miniaturized smart imaging devices.
Multifocal lens, which focus incident light at multiple foci, are widely used in imaging systems and optical communications. However, for the traditional design strategy, it combines several lenses that have different focal points into a planar integ rated unit, resulting a low imaging quality due to the high background noise. Here, we propose two kinds of multifocal metalens with Au nanoslits arranged in an elliptical and a hyperbolic shape, which are able to effectively focus incident light at all of the foci with constructive interference, and extremely decrease the background noise and improve the lens imaging performance at the nanoscale. We further demonstrate that, the proposed metalens can possess a broadband operation wavelength changed from 600 nm to 900 nm, with its dual-polarity actively controlled by the incident circular polarization lights. With great agreement between the experimental and simulation results, our proposed conic-shaped metalens provides a significant potential for the future integrated nanophotonic device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا