ﻻ يوجد ملخص باللغة العربية
Metasurfaces enable a new paradigm of controlling electromagnetic waves by manipulating subwavelength artificial structures within just a fraction of wavelength. Despite the rapid growth, simultaneously achieving low-dimensionality, high transmission efficiency, real-time continuous reconfigurability, and a wide variety of re-programmable functions are still very challenging, forcing researchers to realize just one or few of the aforementioned features in one design. In this study, we report a subwavelength reconfigurable Huygens metasurface realized by loading it with controllable active elements. Our proposed design provides a unified solution to the aforementioned challenges of real-time local reconfigurability of efficient Huygens metasurfaces. As one exemplary demonstration, we experimentally realized a reconfigurable metalens at the microwave frequencies which, to our best knowledge, demonstrates for the first time that multiple and complex focal spots can be controlled simultaneously at distinct spatial positions and re-programmable in any desired fashion, with fast response time and high efficiency. The presented active Huygens metalens may offer unprecedented potentials for real-time, fast, and sophisticated electromagnetic wave manipulation such as dynamic holography, focusing, beam shaping/steering, imaging and active emission control.
Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, a
The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and
Guided-wave plasmonic circuits are promising platforms for sensing, interconnection, and quantum applications in the sub-diffraction regime. Nonetheless, the loss-confinement trade-off remains a collective bottleneck for plasmonic-enhanced optical pr
Optical metasurfaces have shown to be a powerful approach to planar optical elements, enabling an unprecedented control over light phase and amplitude. At that stage, where wide variety of static functionalities have been accomplished, most efforts a
Multifocal lens, which focus incident light at multiple foci, are widely used in imaging systems and optical communications. However, for the traditional design strategy, it combines several lenses that have different focal points into a planar integ