ﻻ يوجد ملخص باللغة العربية
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a novel insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1-dim marginal distribution into a factorized 2-dim distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state, thus the negativity of the corresponding density operator provides an evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential---a measure of entanglement generated using a nonclassical state with a beam splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion confirming their nonclassicality in a measurement-axis independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, i.e. detection of genuine non-Gaussianity under a CV measurement.
We report the experimental reconstruction of a nonclassicality quasiprobability for a single-photon added thermal state. This quantity has significant negativities, which is necessary and sufficient for the nonclassicality of the quantum state. Our m
We evaluate a Gaussian distance-type degree of nonclassicality for a single-mode Gaussian state of the quantum radiation field by use of the recently discovered quantum Chernoff bound. The general properties of the quantum Chernoff overlap and its re
We propose a hierachy of nonclassicality criteria in phase space. Our formalism covers the negativity in phase space as a special case and further adresses nonclassicality for quantum states with positive phase-space distributions. Remarkably, it ena
Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuo
In a recent paper [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor., 41, 062001 (2008)] a test of nonclassicality for a single qubit was proposed. Here, we discuss the class of local realistic theories to which this test applies and present an experimental realization.