ترغب بنشر مسار تعليمي؟ اضغط هنا

A measurement of the ionization efficiency of nuclear recoils in silicon

65   0   0.0 ( 0 )
 نشر من قبل Federico Izraelevitch
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the ionization efficiency of silicon nuclear recoils with kinetic energy between 1.8 and 20 keV. We bombarded a silicon-drift diode with a neutron beam to perform an elastic-scattering experiment. A broad-energy neutron spectrum was used and the nuclear recoil energy was reconstructed using a measurement of the time of flight and scattering angle of the scattered neutron. The overall trend of the results of this work is well described by the theory of Lindhard et al. above 4 keV of recoil energy. Below this energy, the presented data shows a deviation from the model. The data indicates a faster drop than the theory prediction at low energies.

قيم البحث

اقرأ أيضاً

This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino nucleus scattering. A significant dependence of $Q_y$ on the applied electric field is observed and explained in the context of ion recombination.
Liquid Xenon (LXe) is an excellent material for experiments designed to detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs). A low energy detection threshold is essential for a sensitive WIMP search. The understanding of th e relative scintillation efficiency (Leff) and ionization yield of low energy nuclear recoils in LXe is limited for energies below 10 keV. In this paper, we present new measurements that extend the energy down to 4 keV, finding that Leff decreases with decreasing energy. We also measure the quenching of scintillation efficiency due to the electric field in LXe, finding no significant field dependence.
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $alpha$-Be neutron sources were used to i nduce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
DarkSide-50 has demonstrated the high potential of dual-phase liquid argon time projection chambers in exploring interactions of WIMPs in the GeV/c$^2$ mass range. The technique, based on the detection of the ionization signal amplified via electrolu minescence in the gas phase, allows to explore recoil energies down to the sub-keV range. We report here on the DarkSide-50 measurement of the ionization yield of electronic recoils down to $sim$180~eV$_{er}$, exploiting $^{37}$Ar and $^{39}$Ar decays, and extrapolated to a few ionization electrons with the Thomas-Imel box model. Moreover, we present a model-dependent determination of the ionization response to nuclear recoils down to $sim$500~eV$_{nr}$, the lowest ever achieved in liquid argon, using textit{in situ} neutron calibration sources and external datasets from neutron beam experiments.
We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9} $Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا