ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced IR Light Absorption in Group IV-SiGeSn Core-Shell Nanowires

59   0   0.0 ( 0 )
 نشر من قبل Oussama Moutanabbir
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sn-containing Si and Ge alloys belong to an emerging family of semiconductors with the potential to impact group IV semiconductor devices. Indeed, the ability to independently engineer both lattice parameter and band gap holds the premise to develop enhanced or novel photonic, optoelectronic, and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si- and Ge-based heterostructures and nanowires. We found that adding a thin Ge1-x-ySixSny capping layer on Si or Ge greatly enhances light absorption especially in the near IR range leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is predicted with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important when increasing the Sn content. Moreover, by exploiting optical antenna effect, these nanowires show an extreme light absorption reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of ~104 in Si/Ge0.84Si0.04Sn0.12 and ~12 in Ge/Ge0.84Si0.04Sn0.12 core/shell nanowires. Furthermore, we analyzed the optical response of the addition of a dielectric capping layer consisting of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found about 50% increase in short-circuit current density for a dielectric layer thickness of 45 nm and a core radius and shell thickness superior to 40 nm. The core/shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.



قيم البحث

اقرأ أيضاً

The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here, we study an additional effect on the SOC: the asymmetry induced b y the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behavior is counterintuitive compared to bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin-orbitronic concepts in semiconductor-based structures.
151 - C. Chen , S. Shehata , C. Fradin 2007
Al(0.37)Ga(0.63)As nanowires (NWs) were grown in a molecular beam epitaxy system on GaAs(111)B substrates. Micro-photoluminescence measurements and energy dispersive X-ray spectroscopy indicated a core-shell structure and Al composition gradient alon g the NW axis, producing a potential minimum for carrier confinement. The core-shell structure formed during the growth as a consequence of the different Al and Ga adatom diffusion lengths.
GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the o xide surface, and the semiconducting GaAs nanowires grew epitaxially via the vapor-liquid-solid mechanism as single-crystals from holes in the oxide film. We observed two stages of growth of the GaAs nanowires, first the regular growth and second the residual growth after the Ga supply was finished. The magnetic Fe3Si shells were deposited in an As-free chamber. They completely cover the GaAs cores although they consist of small grains. High-resolution TEM micrographs depict the differently oriented grains in the Fe3Si shells. Selected area diffraction of electrons and XRD gave further evidence that the shells are textured and not single crystals. Facetting of the shells was observed, which lead to thickness inhomogeneities of the shells.
The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross-sections are studied theoretically. We show that at nanoscale dimensions, the non-polar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a non-degenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.
The growth of Sn-rich group-IV semiconductors at the nanoscale provides new paths for understanding the fundamental properties of metastable GeSn alloys. Here, we demonstrate the effect of the growth conditions on the morphology and composition of Ge /GeSn core/shell nanowires by correlating the experimental observations with a theoretical interpretation based on a multi-scale approach. We show that the cross-sectional morphology of Ge/GeSn core/shell nanowires changes from hexagonal to dodecagonal upon increasing the supply of the Sn precursor. This transformation strongly influences the Sn distribution as a higher Sn content is measured under the {112} growth front. Ab-initio DFT calculations provide an atomic-scale explanation by showing that Sn incorporation is favored at the {112} surfaces, where the Ge bonds are tensile-strained. A phase-field continuum model was developed to reproduce the morphological transformation and the Sn distribution within the wire, shedding light on the complex growth mechanism and unveiling the relation between segregation and faceting. The tunability of the photoluminescence emission with the change in composition and morphology of the GeSn shell highlights the potential of the core/shell nanowire system for opto-electronic devices operating at mid-infrared wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا