ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons

36   0   0.0 ( 0 )
 نشر من قبل Wei Jiang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum hydrodynamic model is used to study the edge modes of chiral Berry plasmons. The transcendental equation of the dispersion relation is solved nonlinearly and semi-analytically. We predict a new one-way chiral edge state with the quantum effect compared to that without the quantum effect, at the both side of $q=0$. Indeed, the plasmon frequencies for positive and negative $q$, exhibit different limits for $qrightarrow 0^{-}$ and $qrightarrow 0^{+}$. As a result, the quantum effect enhances the chirality in the vicinity of $q=0$. Both counterpropagating edge modes exhibit greater confinement to the edge with the quantum effect. In addition, new localized edge modes are found with increased Berry flux in both cases, i.e., without and with the quantum effect.

قيم البحث

اقرأ أيضاً

80 - N. Goldman , G. Jotzu , M. Messer 2016
We propose and analyze a general scheme to create chiral topological edge modes within the bulk of two-dimensional engineered quantum systems. Our method is based on the implementation of topological interfaces, designed within the bulk of the system , where topologically-protected edge modes localize and freely propagate in a unidirectional manner. This scheme is illustrated through an optical-lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space. We present two realistic experimental configurations, which lead to linear and radial-symmetric topological interfaces, which both allows one to significantly reduce the effects of external confinement on topological edge properties. Furthermore, the versatility of our method opens the possibility of tuning the position, the localization length and the chirality of the edge modes, through simple adjustments of the lattice potentials. In order to demonstrate the unique detectability offered by engineered interfaces, we numerically investigate the time-evolution of wave packets, indicating how topological transport unambiguously manifests itself within the lattice. Finally, we analyze the effects of disorder on the dynamics of chiral and non-chiral states present in the system. Interestingly, engineered disorder is shown to provide a powerful tool for the detection of topological edge modes in cold-atom setups.
Bosons and fermions, in the presence of frustration or background gauge fields, can form manybody ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or artificial gauge fields in ultr acold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge invariant route to visualizing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge currents in gapped topological states, such as quantum Hall or quantum spin Hall insulators.
A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases featuring anomalous edge modes with the wrong chirality. This leads to pairs of counter-propagating chiral edge modes at each edge, in sharp co ntrast to stationary quantum Hall systems. We show that the pair of Floquet edge modes are protected by the chiral (sublattice) symmetry, and that they are robust against static disorder. The existence of distinctive phases with the same Chern and winding numbers but very different edge state spectra points to the important role played by symmetry in classifying topological properties of driven systems. We further explore the evolution of the edge states with driving using a simplified model, and discuss their experimental signatures.
We propose a method to create two-dimensional topological superconductors with a heterostructure of ferromagnet (FM), topological insulator (TI) thin film and superconductor, in which the two surfaces of the TI thin film are treated as a two-dimensio nal system. One of surfaces is superconducting due to proximity effect and the other feels an exchange field from the FM. We show that there is a topological phase with single chiral Majorana edge mode that exists in readily achievable parameter regions and does not require magnetization to be small. An experimental setup is proposed based on our model to uniquely determine the existence of Majorana chiral modes using a Josephson junction. Also, we show that multiple chiral Majorana edge modes may appear when unconventional superconductors are used.
110 - A. Amo , S. Pigeon , D. Sanvitto 2011
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantised vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا