ترغب بنشر مسار تعليمي؟ اضغط هنا

The abundance of compact quiescent galaxies since z ~ 0.6

67   0   0.0 ( 0 )
 نشر من قبل Ald\\'ee Charbonnier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We set out to quantify the number density of quiescent massive compact galaxies at intermediate redshifts. We determine structural parameters based on i-band imaging using the CFHT equatorial SDSS Stripe 82 (CS82) survey (~170 sq. degrees) taking advantage of an exquisite median seeing of ~0.6. We select compact massive (M > 5x10^10 M_sun) galaxies within the redshift range of 0.2<z<0.6. The large volume sampled allows to decrease the effect of cosmic variance that has hampered the calculation of the number density for this enigmatic population in many previous studies. We undertake an exhaustive analysis in an effort to untangle the various findings inherent to the diverse definition of compactness present in the literature. We find that the absolute number of compact galaxies is very dependent on the adopted definition and can change up to a factor of >10. We systematically measure a factor of ~5 more compacts at the same redshift than what was previously reported on smaller fields with HST imaging, which are more affected by cosmic variance. This means that the decrease in number density from z ~ 1.5 to z ~ 0.2 might be only of a factor of ~2-5, significantly smaller than what previously reported. This supports progenitor bias as the main contributor to the size evolution. This milder decrease is roughly compatible with the predictions from recent numerical simulations. Only the most extreme compact galaxies, with Reff < 1.5x( M/10^11 M_sun)^0.75 and M > 10^10.7 M_sun, appear to drop in number by a factor of ~20 and hence likely experience a noticeable size evolution.



قيم البحث

اقرأ أيضاً

146 - S. Toft , V. Smolcic , B. Magnelli 2014
Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimeter selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, representative spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are consistent with being the progenitors of z=2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
159 - A. Gallazzi 2014
The stellar populations of intermediate-redshift galaxies can shed light onto the growth of massive galaxies in the last 8 billion years. We perform deep, multi-object rest-frame optical spectroscopy with IMACS/Magellan of ~70 galaxies in the E-CDFS with redshift 0.65<z<0.75, apparent magnitude R>22.7 and stellar mass >10^{10}Msun. Following the Bayesian approach adopted for previous low-redshift studies, we constrain the stellar mass, mean stellar age and stellar metallicity of individual galaxies from stellar absorption features. We characterize for the first time the dependence of stellar metallicity and age on stellar mass at z~0.7 for all galaxies and for quiescent and star-forming galaxies separately. These relations for the whole sample have a similar shape as the z=0.1 SDSS analog, but are shifted by -0.28 dex in age and by -0.13 dex in metallicity, at odds with simple passive evolution. We find that no additional star formation and chemical enrichment are required for z=0.7 quiescent galaxies to evolve into the present-day quiescent population. However, this must be accompanied by the quenching of a fraction of z=0.7 Mstar>10^{11}Msun star-forming galaxies with metallicities comparable to those of quiescent galaxies, thus increasing the scatter in age without affecting the metallicity distribution. However rapid quenching of the entire population of massive star-forming galaxies at z=0.7 would be inconsistent with the age/metallicity--mass relation for the population as a whole and with the metallicity distribution of star-forming galaxies only, which are on average 0.12 dex less metal-rich than their local counterparts. This indicates chemical enrichment until the present in at least a fraction of the z=0.7 massive star-forming galaxies.[abridged]
The chemical composition of galaxies has been measured out to z~4. However, nearly all studies beyond z~0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galax ies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultra-deep rest-frame optical spectra of five massive quiescent galaxies at z~1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass-metallicity relation was already in place at z~1.4. While the [Mg/Fe]-mass relation at z~1.4 is consistent with the z<0.7 relation, [Fe/H] at z~1.4 is ~0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44(+0.08,-0.07) the most massive galaxy may be more alpha-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low-mass, less alpha-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star-formation timescales of 0.2-1.0 Gyr.
We study structural properties of spectroscopically confirmed massive quiescent galaxies at $zapprox 3$ with one of the first sizeable samples of such sources, made of ten $10.8<log(M_{star}/M_{odot})<11.3$ galaxies at $2.4 < z < 3.2$ in the COSMOS f ield whose redshifts and quiescence are confirmed by HST grism spectroscopy. Although affected by a weak bias toward younger stellar populations, this sample is deemed to be largely representative of the majority of the most massive and thus intrinsically rarest quiescent sources at this cosmic time. We rely on targeted HST/WFC3 observations and fit Sersic profiles to the galaxy surface brightness distributions at $approx 4000$ angstrom restframe. We find typically high Sersic indices and axis ratios (medians $approx 4.5$ and $0.73$, respectively) suggesting that, at odds with some previous results, the first massive quiescent galaxies may largely be already bulge-dominated systems. We measure compact galaxy sizes with an average of $approx 1.4$kpc at $log(M_{star}/M_{odot})approx 11.2$, in good agreement with the extrapolation at the highest masses of previous determinations of the stellar mass - size relation of quiescent galaxies, and of its redshift evolution, from photometrically selected samples at lower and similar redshifts. This work confirms the existence of a population of compact, bulge dominated, massive, quiescent sources at $zapprox 3$, providing one of the first statistical estimates of their structural properties, and further constraining the early formation and evolution of the first quiescent galaxies.
167 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala ctic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا