ﻻ يوجد ملخص باللغة العربية
The reconstruction of sparse signals requires the solution of an $ell_0$-norm minimization problem in Compressed Sensing. Previous research has focused on the investigation of a single candidate to identify the support (index of nonzero elements) of a sparse signal. To ensure that the optimal candidate can be obtained in each iteration, we propose here an iterative greedy reconstruction algorithm (GSRA). First, the intersection of the support sets estimated by the Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP) is set as the initial support set. Then, a hope-tree is built to expand the set. Finally, a developed decreasing subspace pursuit method is used to rectify the candidate set. Detailed simulation results demonstrate that GSRA is more accurate than other typical methods in recovering Gaussian signals, 0--1 sparse signals, and synthetic signals.
In this paper, we put forth a new joint sparse recovery algorithm called signal space matching pursuit (SSMP). The key idea of the proposed SSMP algorithm is to sequentially investigate the support of jointly sparse vectors to minimize the subspace d
The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering $K$-sparse signals $xin mathbb{R}^{n}$ from linear model $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix. A fundamental question in the performan
Exact recovery of $K$-sparse signals $x in mathbb{R}^{n}$ from linear measurements $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix, arises from many applications. The orthogonal matching pursuit (OMP) algorithm is widely used for reconst
Orthogonal matching pursuit (OMP) is one of the mainstream algorithms for signal reconstruction/approximation. It plays a vital role in the development of compressed sensing theory, and it also acts as a driving force for the development of other heu
Recovery algorithms play a key role in compressive sampling (CS). Most of current CS recovery algorithms are originally designed for one-dimensional (1D) signal, while many practical signals are two-dimensional (2D). By utilizing 2D separable samplin