ﻻ يوجد ملخص باللغة العربية
The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectation values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this paper, we study the application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We introduce new strategies to reduce the circuit depth for the implementation of UCC and improve the optimization of the wavefunction based on efficient classical approximations of the cluster amplitudes. Additionally, we propose an analytical method to compute the energy gradient that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients. We illustrate our methodology with numerical simulations for a system of four hydrogen atoms that exhibit strong correlation and show that the circuit depth of VQE using a UCC ansatz can be reduced without introducing significant loss of accuracy in the final wavefunctions and energies.
Neural-Network Quantum State (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground
In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used $ab~initio$ methods, which is critically limited by its non-unitary nature. The unitary modification as an ideal solution to the problem is, however, ex
Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of
The computation of molecular excitation energies is essential for predicting photo-induced reactions of chemical and technological interest. While the classical computing resources needed for this task scale poorly, quantum algorithms emerge as promi
Let $H_1, H_2$ be Hilbert spaces of the same finite dimension $ge2$, and $C$ an arbitrary quantum circuit with (principal) input state in $H_1$ and (principal) output state in $H_2$. $C$ may use ancillas and produce garbage which is traced out. $C$ m